Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2ndmbfm Structured version   Visualization version   GIF version

Theorem 2ndmbfm 30323
Description: The second projection map is measurable with regard to the product sigma-algebra. (Contributed by Thierry Arnoux, 3-Jun-2017.)
Hypotheses
Ref Expression
1stmbfm.1 (𝜑𝑆 ran sigAlgebra)
1stmbfm.2 (𝜑𝑇 ran sigAlgebra)
Assertion
Ref Expression
2ndmbfm (𝜑 → (2nd ↾ ( 𝑆 × 𝑇)) ∈ ((𝑆 ×s 𝑇)MblFnM𝑇))

Proof of Theorem 2ndmbfm
Dummy variables 𝑧 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f2ndres 7191 . . . 4 (2nd ↾ ( 𝑆 × 𝑇)):( 𝑆 × 𝑇)⟶ 𝑇
2 1stmbfm.1 . . . . . 6 (𝜑𝑆 ran sigAlgebra)
3 1stmbfm.2 . . . . . 6 (𝜑𝑇 ran sigAlgebra)
4 sxuni 30256 . . . . . 6 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → ( 𝑆 × 𝑇) = (𝑆 ×s 𝑇))
52, 3, 4syl2anc 693 . . . . 5 (𝜑 → ( 𝑆 × 𝑇) = (𝑆 ×s 𝑇))
65feq2d 6031 . . . 4 (𝜑 → ((2nd ↾ ( 𝑆 × 𝑇)):( 𝑆 × 𝑇)⟶ 𝑇 ↔ (2nd ↾ ( 𝑆 × 𝑇)): (𝑆 ×s 𝑇)⟶ 𝑇))
71, 6mpbii 223 . . 3 (𝜑 → (2nd ↾ ( 𝑆 × 𝑇)): (𝑆 ×s 𝑇)⟶ 𝑇)
8 unielsiga 30191 . . . . 5 (𝑇 ran sigAlgebra → 𝑇𝑇)
93, 8syl 17 . . . 4 (𝜑 𝑇𝑇)
10 sxsiga 30254 . . . . . 6 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → (𝑆 ×s 𝑇) ∈ ran sigAlgebra)
112, 3, 10syl2anc 693 . . . . 5 (𝜑 → (𝑆 ×s 𝑇) ∈ ran sigAlgebra)
12 unielsiga 30191 . . . . 5 ((𝑆 ×s 𝑇) ∈ ran sigAlgebra → (𝑆 ×s 𝑇) ∈ (𝑆 ×s 𝑇))
1311, 12syl 17 . . . 4 (𝜑 (𝑆 ×s 𝑇) ∈ (𝑆 ×s 𝑇))
149, 13elmapd 7871 . . 3 (𝜑 → ((2nd ↾ ( 𝑆 × 𝑇)) ∈ ( 𝑇𝑚 (𝑆 ×s 𝑇)) ↔ (2nd ↾ ( 𝑆 × 𝑇)): (𝑆 ×s 𝑇)⟶ 𝑇))
157, 14mpbird 247 . 2 (𝜑 → (2nd ↾ ( 𝑆 × 𝑇)) ∈ ( 𝑇𝑚 (𝑆 ×s 𝑇)))
16 sgon 30187 . . . . . . . . . . 11 (𝑇 ran sigAlgebra → 𝑇 ∈ (sigAlgebra‘ 𝑇))
17 sigasspw 30179 . . . . . . . . . . 11 (𝑇 ∈ (sigAlgebra‘ 𝑇) → 𝑇 ⊆ 𝒫 𝑇)
18 pwssb 4612 . . . . . . . . . . . 12 (𝑇 ⊆ 𝒫 𝑇 ↔ ∀𝑎𝑇 𝑎 𝑇)
1918biimpi 206 . . . . . . . . . . 11 (𝑇 ⊆ 𝒫 𝑇 → ∀𝑎𝑇 𝑎 𝑇)
203, 16, 17, 194syl 19 . . . . . . . . . 10 (𝜑 → ∀𝑎𝑇 𝑎 𝑇)
2120r19.21bi 2932 . . . . . . . . 9 ((𝜑𝑎𝑇) → 𝑎 𝑇)
22 xpss2 5229 . . . . . . . . 9 (𝑎 𝑇 → ( 𝑆 × 𝑎) ⊆ ( 𝑆 × 𝑇))
2321, 22syl 17 . . . . . . . 8 ((𝜑𝑎𝑇) → ( 𝑆 × 𝑎) ⊆ ( 𝑆 × 𝑇))
2423sseld 3602 . . . . . . 7 ((𝜑𝑎𝑇) → (𝑧 ∈ ( 𝑆 × 𝑎) → 𝑧 ∈ ( 𝑆 × 𝑇)))
2524pm4.71rd 667 . . . . . 6 ((𝜑𝑎𝑇) → (𝑧 ∈ ( 𝑆 × 𝑎) ↔ (𝑧 ∈ ( 𝑆 × 𝑇) ∧ 𝑧 ∈ ( 𝑆 × 𝑎))))
26 ffn 6045 . . . . . . . 8 ((2nd ↾ ( 𝑆 × 𝑇)):( 𝑆 × 𝑇)⟶ 𝑇 → (2nd ↾ ( 𝑆 × 𝑇)) Fn ( 𝑆 × 𝑇))
27 elpreima 6337 . . . . . . . 8 ((2nd ↾ ( 𝑆 × 𝑇)) Fn ( 𝑆 × 𝑇) → (𝑧 ∈ ((2nd ↾ ( 𝑆 × 𝑇)) “ 𝑎) ↔ (𝑧 ∈ ( 𝑆 × 𝑇) ∧ ((2nd ↾ ( 𝑆 × 𝑇))‘𝑧) ∈ 𝑎)))
281, 26, 27mp2b 10 . . . . . . 7 (𝑧 ∈ ((2nd ↾ ( 𝑆 × 𝑇)) “ 𝑎) ↔ (𝑧 ∈ ( 𝑆 × 𝑇) ∧ ((2nd ↾ ( 𝑆 × 𝑇))‘𝑧) ∈ 𝑎))
29 fvres 6207 . . . . . . . . . 10 (𝑧 ∈ ( 𝑆 × 𝑇) → ((2nd ↾ ( 𝑆 × 𝑇))‘𝑧) = (2nd𝑧))
3029eleq1d 2686 . . . . . . . . 9 (𝑧 ∈ ( 𝑆 × 𝑇) → (((2nd ↾ ( 𝑆 × 𝑇))‘𝑧) ∈ 𝑎 ↔ (2nd𝑧) ∈ 𝑎))
31 1st2nd2 7205 . . . . . . . . . 10 (𝑧 ∈ ( 𝑆 × 𝑇) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
32 xp1st 7198 . . . . . . . . . 10 (𝑧 ∈ ( 𝑆 × 𝑇) → (1st𝑧) ∈ 𝑆)
33 elxp6 7200 . . . . . . . . . . . 12 (𝑧 ∈ ( 𝑆 × 𝑎) ↔ (𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ ((1st𝑧) ∈ 𝑆 ∧ (2nd𝑧) ∈ 𝑎)))
34 anass 681 . . . . . . . . . . . 12 (((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (1st𝑧) ∈ 𝑆) ∧ (2nd𝑧) ∈ 𝑎) ↔ (𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ ((1st𝑧) ∈ 𝑆 ∧ (2nd𝑧) ∈ 𝑎)))
3533, 34bitr4i 267 . . . . . . . . . . 11 (𝑧 ∈ ( 𝑆 × 𝑎) ↔ ((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (1st𝑧) ∈ 𝑆) ∧ (2nd𝑧) ∈ 𝑎))
3635baib 944 . . . . . . . . . 10 ((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (1st𝑧) ∈ 𝑆) → (𝑧 ∈ ( 𝑆 × 𝑎) ↔ (2nd𝑧) ∈ 𝑎))
3731, 32, 36syl2anc 693 . . . . . . . . 9 (𝑧 ∈ ( 𝑆 × 𝑇) → (𝑧 ∈ ( 𝑆 × 𝑎) ↔ (2nd𝑧) ∈ 𝑎))
3830, 37bitr4d 271 . . . . . . . 8 (𝑧 ∈ ( 𝑆 × 𝑇) → (((2nd ↾ ( 𝑆 × 𝑇))‘𝑧) ∈ 𝑎𝑧 ∈ ( 𝑆 × 𝑎)))
3938pm5.32i 669 . . . . . . 7 ((𝑧 ∈ ( 𝑆 × 𝑇) ∧ ((2nd ↾ ( 𝑆 × 𝑇))‘𝑧) ∈ 𝑎) ↔ (𝑧 ∈ ( 𝑆 × 𝑇) ∧ 𝑧 ∈ ( 𝑆 × 𝑎)))
4028, 39bitri 264 . . . . . 6 (𝑧 ∈ ((2nd ↾ ( 𝑆 × 𝑇)) “ 𝑎) ↔ (𝑧 ∈ ( 𝑆 × 𝑇) ∧ 𝑧 ∈ ( 𝑆 × 𝑎)))
4125, 40syl6rbbr 279 . . . . 5 ((𝜑𝑎𝑇) → (𝑧 ∈ ((2nd ↾ ( 𝑆 × 𝑇)) “ 𝑎) ↔ 𝑧 ∈ ( 𝑆 × 𝑎)))
4241eqrdv 2620 . . . 4 ((𝜑𝑎𝑇) → ((2nd ↾ ( 𝑆 × 𝑇)) “ 𝑎) = ( 𝑆 × 𝑎))
432adantr 481 . . . . 5 ((𝜑𝑎𝑇) → 𝑆 ran sigAlgebra)
443adantr 481 . . . . 5 ((𝜑𝑎𝑇) → 𝑇 ran sigAlgebra)
45 eqid 2622 . . . . . . . 8 𝑆 = 𝑆
46 issgon 30186 . . . . . . . 8 (𝑆 ∈ (sigAlgebra‘ 𝑆) ↔ (𝑆 ran sigAlgebra ∧ 𝑆 = 𝑆))
472, 45, 46sylanblrc 697 . . . . . . 7 (𝜑𝑆 ∈ (sigAlgebra‘ 𝑆))
48 baselsiga 30178 . . . . . . 7 (𝑆 ∈ (sigAlgebra‘ 𝑆) → 𝑆𝑆)
4947, 48syl 17 . . . . . 6 (𝜑 𝑆𝑆)
5049adantr 481 . . . . 5 ((𝜑𝑎𝑇) → 𝑆𝑆)
51 simpr 477 . . . . 5 ((𝜑𝑎𝑇) → 𝑎𝑇)
52 elsx 30257 . . . . 5 (((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) ∧ ( 𝑆𝑆𝑎𝑇)) → ( 𝑆 × 𝑎) ∈ (𝑆 ×s 𝑇))
5343, 44, 50, 51, 52syl22anc 1327 . . . 4 ((𝜑𝑎𝑇) → ( 𝑆 × 𝑎) ∈ (𝑆 ×s 𝑇))
5442, 53eqeltrd 2701 . . 3 ((𝜑𝑎𝑇) → ((2nd ↾ ( 𝑆 × 𝑇)) “ 𝑎) ∈ (𝑆 ×s 𝑇))
5554ralrimiva 2966 . 2 (𝜑 → ∀𝑎𝑇 ((2nd ↾ ( 𝑆 × 𝑇)) “ 𝑎) ∈ (𝑆 ×s 𝑇))
5611, 3ismbfm 30314 . 2 (𝜑 → ((2nd ↾ ( 𝑆 × 𝑇)) ∈ ((𝑆 ×s 𝑇)MblFnM𝑇) ↔ ((2nd ↾ ( 𝑆 × 𝑇)) ∈ ( 𝑇𝑚 (𝑆 ×s 𝑇)) ∧ ∀𝑎𝑇 ((2nd ↾ ( 𝑆 × 𝑇)) “ 𝑎) ∈ (𝑆 ×s 𝑇))))
5715, 55, 56mpbir2and 957 1 (𝜑 → (2nd ↾ ( 𝑆 × 𝑇)) ∈ ((𝑆 ×s 𝑇)MblFnM𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wss 3574  𝒫 cpw 4158  cop 4183   cuni 4436   × cxp 5112  ccnv 5113  ran crn 5115  cres 5116  cima 5117   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  𝑚 cmap 7857  sigAlgebracsiga 30170   ×s csx 30251  MblFnMcmbfm 30312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-siga 30171  df-sigagen 30202  df-sx 30252  df-mbfm 30313
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator