![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rfcnpre1 | Structured version Visualization version GIF version |
Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values greater than a given extended real B is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
rfcnpre1.1 | ⊢ Ⅎ𝑥𝐵 |
rfcnpre1.2 | ⊢ Ⅎ𝑥𝐹 |
rfcnpre1.3 | ⊢ Ⅎ𝑥𝜑 |
rfcnpre1.4 | ⊢ 𝐾 = (topGen‘ran (,)) |
rfcnpre1.5 | ⊢ 𝑋 = ∪ 𝐽 |
rfcnpre1.6 | ⊢ 𝐴 = {𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)} |
rfcnpre1.7 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
rfcnpre1.8 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
Ref | Expression |
---|---|
rfcnpre1 | ⊢ (𝜑 → 𝐴 ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rfcnpre1.3 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | rfcnpre1.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
3 | 2 | nfcnv 5301 | . . . . 5 ⊢ Ⅎ𝑥◡𝐹 |
4 | rfcnpre1.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
5 | nfcv 2764 | . . . . . 6 ⊢ Ⅎ𝑥(,) | |
6 | nfcv 2764 | . . . . . 6 ⊢ Ⅎ𝑥+∞ | |
7 | 4, 5, 6 | nfov 6676 | . . . . 5 ⊢ Ⅎ𝑥(𝐵(,)+∞) |
8 | 3, 7 | nfima 5474 | . . . 4 ⊢ Ⅎ𝑥(◡𝐹 “ (𝐵(,)+∞)) |
9 | nfrab1 3122 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)} | |
10 | rfcnpre1.8 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
11 | cntop1 21044 | . . . . . . . . . . . . 13 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
12 | 10, 11 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐽 ∈ Top) |
13 | rfcnpre1.5 | . . . . . . . . . . . 12 ⊢ 𝑋 = ∪ 𝐽 | |
14 | istopon 20717 | . . . . . . . . . . . 12 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽)) | |
15 | 12, 13, 14 | sylanblrc 697 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
16 | rfcnpre1.4 | . . . . . . . . . . . 12 ⊢ 𝐾 = (topGen‘ran (,)) | |
17 | retopon 22567 | . . . . . . . . . . . 12 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) | |
18 | 16, 17 | eqeltri 2697 | . . . . . . . . . . 11 ⊢ 𝐾 ∈ (TopOn‘ℝ) |
19 | iscn 21039 | . . . . . . . . . . 11 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℝ)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶ℝ ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) | |
20 | 15, 18, 19 | sylancl 694 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶ℝ ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
21 | 10, 20 | mpbid 222 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹:𝑋⟶ℝ ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽)) |
22 | 21 | simpld 475 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝑋⟶ℝ) |
23 | 22 | ffvelrnda 6359 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ ℝ) |
24 | rfcnpre1.7 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
25 | elioopnf 12267 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℝ* → ((𝐹‘𝑥) ∈ (𝐵(,)+∞) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ 𝐵 < (𝐹‘𝑥)))) | |
26 | 24, 25 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ((𝐹‘𝑥) ∈ (𝐵(,)+∞) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ 𝐵 < (𝐹‘𝑥)))) |
27 | 26 | baibd 948 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹‘𝑥) ∈ ℝ) → ((𝐹‘𝑥) ∈ (𝐵(,)+∞) ↔ 𝐵 < (𝐹‘𝑥))) |
28 | 23, 27 | syldan 487 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑥) ∈ (𝐵(,)+∞) ↔ 𝐵 < (𝐹‘𝑥))) |
29 | 28 | pm5.32da 673 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ∈ (𝐵(,)+∞)) ↔ (𝑥 ∈ 𝑋 ∧ 𝐵 < (𝐹‘𝑥)))) |
30 | ffn 6045 | . . . . . 6 ⊢ (𝐹:𝑋⟶ℝ → 𝐹 Fn 𝑋) | |
31 | elpreima 6337 | . . . . . 6 ⊢ (𝐹 Fn 𝑋 → (𝑥 ∈ (◡𝐹 “ (𝐵(,)+∞)) ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ∈ (𝐵(,)+∞)))) | |
32 | 22, 30, 31 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (◡𝐹 “ (𝐵(,)+∞)) ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ∈ (𝐵(,)+∞)))) |
33 | rabid 3116 | . . . . . 6 ⊢ (𝑥 ∈ {𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)} ↔ (𝑥 ∈ 𝑋 ∧ 𝐵 < (𝐹‘𝑥))) | |
34 | 33 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ {𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)} ↔ (𝑥 ∈ 𝑋 ∧ 𝐵 < (𝐹‘𝑥)))) |
35 | 29, 32, 34 | 3bitr4d 300 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (◡𝐹 “ (𝐵(,)+∞)) ↔ 𝑥 ∈ {𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)})) |
36 | 1, 8, 9, 35 | eqrd 3622 | . . 3 ⊢ (𝜑 → (◡𝐹 “ (𝐵(,)+∞)) = {𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)}) |
37 | rfcnpre1.6 | . . 3 ⊢ 𝐴 = {𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)} | |
38 | 36, 37 | syl6eqr 2674 | . 2 ⊢ (𝜑 → (◡𝐹 “ (𝐵(,)+∞)) = 𝐴) |
39 | iooretop 22569 | . . . 4 ⊢ (𝐵(,)+∞) ∈ (topGen‘ran (,)) | |
40 | 39, 16 | eleqtrri 2700 | . . 3 ⊢ (𝐵(,)+∞) ∈ 𝐾 |
41 | cnima 21069 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐵(,)+∞) ∈ 𝐾) → (◡𝐹 “ (𝐵(,)+∞)) ∈ 𝐽) | |
42 | 10, 40, 41 | sylancl 694 | . 2 ⊢ (𝜑 → (◡𝐹 “ (𝐵(,)+∞)) ∈ 𝐽) |
43 | 38, 42 | eqeltrrd 2702 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 Ⅎwnf 1708 ∈ wcel 1990 Ⅎwnfc 2751 ∀wral 2912 {crab 2916 ∪ cuni 4436 class class class wbr 4653 ◡ccnv 5113 ran crn 5115 “ cima 5117 Fn wfn 5883 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ℝcr 9935 +∞cpnf 10071 ℝ*cxr 10073 < clt 10074 (,)cioo 12175 topGenctg 16098 Topctop 20698 TopOnctopon 20715 Cn ccn 21028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-ioo 12179 df-topgen 16104 df-top 20699 df-topon 20716 df-bases 20750 df-cn 21031 |
This theorem is referenced by: stoweidlem46 40263 |
Copyright terms: Public domain | W3C validator |