![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > t1connperf | Structured version Visualization version GIF version |
Description: A connected T1 space is perfect, unless it is the topology of a singleton. (Contributed by Mario Carneiro, 26-Dec-2016.) |
Ref | Expression |
---|---|
t1connperf.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
t1connperf | ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ∧ ¬ 𝑋 ≈ 1𝑜) → 𝐽 ∈ Perf) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | t1connperf.1 | . . . . . . . 8 ⊢ 𝑋 = ∪ 𝐽 | |
2 | simplr 792 | . . . . . . . 8 ⊢ (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥 ∈ 𝑋 ∧ {𝑥} ∈ 𝐽)) → 𝐽 ∈ Conn) | |
3 | simprr 796 | . . . . . . . 8 ⊢ (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥 ∈ 𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} ∈ 𝐽) | |
4 | vex 3203 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
5 | 4 | snnz 4309 | . . . . . . . . 9 ⊢ {𝑥} ≠ ∅ |
6 | 5 | a1i 11 | . . . . . . . 8 ⊢ (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥 ∈ 𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} ≠ ∅) |
7 | 1 | t1sncld 21130 | . . . . . . . . 9 ⊢ ((𝐽 ∈ Fre ∧ 𝑥 ∈ 𝑋) → {𝑥} ∈ (Clsd‘𝐽)) |
8 | 7 | ad2ant2r 783 | . . . . . . . 8 ⊢ (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥 ∈ 𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} ∈ (Clsd‘𝐽)) |
9 | 1, 2, 3, 6, 8 | connclo 21218 | . . . . . . 7 ⊢ (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥 ∈ 𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} = 𝑋) |
10 | 4 | ensn1 8020 | . . . . . . 7 ⊢ {𝑥} ≈ 1𝑜 |
11 | 9, 10 | syl6eqbrr 4693 | . . . . . 6 ⊢ (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥 ∈ 𝑋 ∧ {𝑥} ∈ 𝐽)) → 𝑋 ≈ 1𝑜) |
12 | 11 | rexlimdvaa 3032 | . . . . 5 ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (∃𝑥 ∈ 𝑋 {𝑥} ∈ 𝐽 → 𝑋 ≈ 1𝑜)) |
13 | 12 | con3d 148 | . . . 4 ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (¬ 𝑋 ≈ 1𝑜 → ¬ ∃𝑥 ∈ 𝑋 {𝑥} ∈ 𝐽)) |
14 | ralnex 2992 | . . . 4 ⊢ (∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽 ↔ ¬ ∃𝑥 ∈ 𝑋 {𝑥} ∈ 𝐽) | |
15 | 13, 14 | syl6ibr 242 | . . 3 ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (¬ 𝑋 ≈ 1𝑜 → ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) |
16 | t1top 21134 | . . . . 5 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Top) | |
17 | 16 | adantr 481 | . . . 4 ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → 𝐽 ∈ Top) |
18 | 1 | isperf3 20957 | . . . . 5 ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) |
19 | 18 | baib 944 | . . . 4 ⊢ (𝐽 ∈ Top → (𝐽 ∈ Perf ↔ ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) |
20 | 17, 19 | syl 17 | . . 3 ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (𝐽 ∈ Perf ↔ ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) |
21 | 15, 20 | sylibrd 249 | . 2 ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (¬ 𝑋 ≈ 1𝑜 → 𝐽 ∈ Perf)) |
22 | 21 | 3impia 1261 | 1 ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ∧ ¬ 𝑋 ≈ 1𝑜) → 𝐽 ∈ Perf) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∀wral 2912 ∃wrex 2913 ∅c0 3915 {csn 4177 ∪ cuni 4436 class class class wbr 4653 ‘cfv 5888 1𝑜c1o 7553 ≈ cen 7952 Topctop 20698 Clsdccld 20820 Perfcperf 20939 Frect1 21111 Conncconn 21214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-1o 7560 df-en 7956 df-top 20699 df-cld 20823 df-ntr 20824 df-cls 20825 df-lp 20940 df-perf 20941 df-t1 21118 df-conn 21215 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |