MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t1connperf Structured version   Visualization version   GIF version

Theorem t1connperf 21239
Description: A connected T1 space is perfect, unless it is the topology of a singleton. (Contributed by Mario Carneiro, 26-Dec-2016.)
Hypothesis
Ref Expression
t1connperf.1 𝑋 = 𝐽
Assertion
Ref Expression
t1connperf ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ∧ ¬ 𝑋 ≈ 1𝑜) → 𝐽 ∈ Perf)

Proof of Theorem t1connperf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 t1connperf.1 . . . . . . . 8 𝑋 = 𝐽
2 simplr 792 . . . . . . . 8 (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥𝑋 ∧ {𝑥} ∈ 𝐽)) → 𝐽 ∈ Conn)
3 simprr 796 . . . . . . . 8 (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} ∈ 𝐽)
4 vex 3203 . . . . . . . . . 10 𝑥 ∈ V
54snnz 4309 . . . . . . . . 9 {𝑥} ≠ ∅
65a1i 11 . . . . . . . 8 (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} ≠ ∅)
71t1sncld 21130 . . . . . . . . 9 ((𝐽 ∈ Fre ∧ 𝑥𝑋) → {𝑥} ∈ (Clsd‘𝐽))
87ad2ant2r 783 . . . . . . . 8 (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} ∈ (Clsd‘𝐽))
91, 2, 3, 6, 8connclo 21218 . . . . . . 7 (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} = 𝑋)
104ensn1 8020 . . . . . . 7 {𝑥} ≈ 1𝑜
119, 10syl6eqbrr 4693 . . . . . 6 (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥𝑋 ∧ {𝑥} ∈ 𝐽)) → 𝑋 ≈ 1𝑜)
1211rexlimdvaa 3032 . . . . 5 ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (∃𝑥𝑋 {𝑥} ∈ 𝐽𝑋 ≈ 1𝑜))
1312con3d 148 . . . 4 ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (¬ 𝑋 ≈ 1𝑜 → ¬ ∃𝑥𝑋 {𝑥} ∈ 𝐽))
14 ralnex 2992 . . . 4 (∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽 ↔ ¬ ∃𝑥𝑋 {𝑥} ∈ 𝐽)
1513, 14syl6ibr 242 . . 3 ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (¬ 𝑋 ≈ 1𝑜 → ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
16 t1top 21134 . . . . 5 (𝐽 ∈ Fre → 𝐽 ∈ Top)
1716adantr 481 . . . 4 ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → 𝐽 ∈ Top)
181isperf3 20957 . . . . 5 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
1918baib 944 . . . 4 (𝐽 ∈ Top → (𝐽 ∈ Perf ↔ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
2017, 19syl 17 . . 3 ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (𝐽 ∈ Perf ↔ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
2115, 20sylibrd 249 . 2 ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (¬ 𝑋 ≈ 1𝑜𝐽 ∈ Perf))
22213impia 1261 1 ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ∧ ¬ 𝑋 ≈ 1𝑜) → 𝐽 ∈ Perf)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  c0 3915  {csn 4177   cuni 4436   class class class wbr 4653  cfv 5888  1𝑜c1o 7553  cen 7952  Topctop 20698  Clsdccld 20820  Perfcperf 20939  Frect1 21111  Conncconn 21214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1o 7560  df-en 7956  df-top 20699  df-cld 20823  df-ntr 20824  df-cls 20825  df-lp 20940  df-perf 20941  df-t1 21118  df-conn 21215
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator