MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tchval Structured version   Visualization version   GIF version

Theorem tchval 23017
Description: Define a function to augment a subcomplex pre-Hilbert space with norm. (Contributed by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
tchval.n 𝐺 = (toℂHil‘𝑊)
tchval.v 𝑉 = (Base‘𝑊)
tchval.h , = (·𝑖𝑊)
Assertion
Ref Expression
tchval 𝐺 = (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
Distinct variable groups:   𝑥, ,   𝑥,𝐺   𝑥,𝑉   𝑥,𝑊

Proof of Theorem tchval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 tchval.n . 2 𝐺 = (toℂHil‘𝑊)
2 id 22 . . . . 5 (𝑤 = 𝑊𝑤 = 𝑊)
3 fveq2 6191 . . . . . . 7 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
4 tchval.v . . . . . . 7 𝑉 = (Base‘𝑊)
53, 4syl6eqr 2674 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
6 fveq2 6191 . . . . . . . . 9 (𝑤 = 𝑊 → (·𝑖𝑤) = (·𝑖𝑊))
7 tchval.h . . . . . . . . 9 , = (·𝑖𝑊)
86, 7syl6eqr 2674 . . . . . . . 8 (𝑤 = 𝑊 → (·𝑖𝑤) = , )
98oveqd 6667 . . . . . . 7 (𝑤 = 𝑊 → (𝑥(·𝑖𝑤)𝑥) = (𝑥 , 𝑥))
109fveq2d 6195 . . . . . 6 (𝑤 = 𝑊 → (√‘(𝑥(·𝑖𝑤)𝑥)) = (√‘(𝑥 , 𝑥)))
115, 10mpteq12dv 4733 . . . . 5 (𝑤 = 𝑊 → (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥))) = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
122, 11oveq12d 6668 . . . 4 (𝑤 = 𝑊 → (𝑤 toNrmGrp (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥)))) = (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))
13 df-tch 22969 . . . 4 toℂHil = (𝑤 ∈ V ↦ (𝑤 toNrmGrp (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥)))))
14 ovex 6678 . . . 4 (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))) ∈ V
1512, 13, 14fvmpt 6282 . . 3 (𝑊 ∈ V → (toℂHil‘𝑊) = (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))
16 fvprc 6185 . . . 4 𝑊 ∈ V → (toℂHil‘𝑊) = ∅)
17 reldmtng 22442 . . . . 5 Rel dom toNrmGrp
1817ovprc1 6684 . . . 4 𝑊 ∈ V → (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))) = ∅)
1916, 18eqtr4d 2659 . . 3 𝑊 ∈ V → (toℂHil‘𝑊) = (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))
2015, 19pm2.61i 176 . 2 (toℂHil‘𝑊) = (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
211, 20eqtri 2644 1 𝐺 = (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1483  wcel 1990  Vcvv 3200  c0 3915  cmpt 4729  cfv 5888  (class class class)co 6650  csqrt 13973  Basecbs 15857  ·𝑖cip 15946   toNrmGrp ctng 22383  toℂHilctch 22967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-tng 22389  df-tch 22969
This theorem is referenced by:  tchbas  23018  tchplusg  23019  tchmulr  23021  tchsca  23022  tchvsca  23023  tchip  23024  tchtopn  23025  tchnmfval  23027  tchds  23030  tchcph  23036
  Copyright terms: Public domain W3C validator