![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tchval | Structured version Visualization version GIF version |
Description: Define a function to augment a subcomplex pre-Hilbert space with norm. (Contributed by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
tchval.n | ⊢ 𝐺 = (toℂHil‘𝑊) |
tchval.v | ⊢ 𝑉 = (Base‘𝑊) |
tchval.h | ⊢ , = (·𝑖‘𝑊) |
Ref | Expression |
---|---|
tchval | ⊢ 𝐺 = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tchval.n | . 2 ⊢ 𝐺 = (toℂHil‘𝑊) | |
2 | id 22 | . . . . 5 ⊢ (𝑤 = 𝑊 → 𝑤 = 𝑊) | |
3 | fveq2 6191 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) | |
4 | tchval.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
5 | 3, 4 | syl6eqr 2674 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉) |
6 | fveq2 6191 | . . . . . . . . 9 ⊢ (𝑤 = 𝑊 → (·𝑖‘𝑤) = (·𝑖‘𝑊)) | |
7 | tchval.h | . . . . . . . . 9 ⊢ , = (·𝑖‘𝑊) | |
8 | 6, 7 | syl6eqr 2674 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (·𝑖‘𝑤) = , ) |
9 | 8 | oveqd 6667 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (𝑥(·𝑖‘𝑤)𝑥) = (𝑥 , 𝑥)) |
10 | 9 | fveq2d 6195 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (√‘(𝑥(·𝑖‘𝑤)𝑥)) = (√‘(𝑥 , 𝑥))) |
11 | 5, 10 | mpteq12dv 4733 | . . . . 5 ⊢ (𝑤 = 𝑊 → (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥))) = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
12 | 2, 11 | oveq12d 6668 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑤 toNrmGrp (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥)))) = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))) |
13 | df-tch 22969 | . . . 4 ⊢ toℂHil = (𝑤 ∈ V ↦ (𝑤 toNrmGrp (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥))))) | |
14 | ovex 6678 | . . . 4 ⊢ (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) ∈ V | |
15 | 12, 13, 14 | fvmpt 6282 | . . 3 ⊢ (𝑊 ∈ V → (toℂHil‘𝑊) = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))) |
16 | fvprc 6185 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (toℂHil‘𝑊) = ∅) | |
17 | reldmtng 22442 | . . . . 5 ⊢ Rel dom toNrmGrp | |
18 | 17 | ovprc1 6684 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) = ∅) |
19 | 16, 18 | eqtr4d 2659 | . . 3 ⊢ (¬ 𝑊 ∈ V → (toℂHil‘𝑊) = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))) |
20 | 15, 19 | pm2.61i 176 | . 2 ⊢ (toℂHil‘𝑊) = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
21 | 1, 20 | eqtri 2644 | 1 ⊢ 𝐺 = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∅c0 3915 ↦ cmpt 4729 ‘cfv 5888 (class class class)co 6650 √csqrt 13973 Basecbs 15857 ·𝑖cip 15946 toNrmGrp ctng 22383 toℂHilctch 22967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-tng 22389 df-tch 22969 |
This theorem is referenced by: tchbas 23018 tchplusg 23019 tchmulr 23021 tchsca 23022 tchvsca 23023 tchip 23024 tchtopn 23025 tchnmfval 23027 tchds 23030 tchcph 23036 |
Copyright terms: Public domain | W3C validator |