| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tchval | Structured version Visualization version Unicode version | ||
| Description: Define a function to augment a subcomplex pre-Hilbert space with norm. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| tchval.n |
|
| tchval.v |
|
| tchval.h |
|
| Ref | Expression |
|---|---|
| tchval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tchval.n |
. 2
| |
| 2 | id 22 |
. . . . 5
| |
| 3 | fveq2 6191 |
. . . . . . 7
| |
| 4 | tchval.v |
. . . . . . 7
| |
| 5 | 3, 4 | syl6eqr 2674 |
. . . . . 6
|
| 6 | fveq2 6191 |
. . . . . . . . 9
| |
| 7 | tchval.h |
. . . . . . . . 9
| |
| 8 | 6, 7 | syl6eqr 2674 |
. . . . . . . 8
|
| 9 | 8 | oveqd 6667 |
. . . . . . 7
|
| 10 | 9 | fveq2d 6195 |
. . . . . 6
|
| 11 | 5, 10 | mpteq12dv 4733 |
. . . . 5
|
| 12 | 2, 11 | oveq12d 6668 |
. . . 4
|
| 13 | df-tch 22969 |
. . . 4
| |
| 14 | ovex 6678 |
. . . 4
| |
| 15 | 12, 13, 14 | fvmpt 6282 |
. . 3
|
| 16 | fvprc 6185 |
. . . 4
| |
| 17 | reldmtng 22442 |
. . . . 5
| |
| 18 | 17 | ovprc1 6684 |
. . . 4
|
| 19 | 16, 18 | eqtr4d 2659 |
. . 3
|
| 20 | 15, 19 | pm2.61i 176 |
. 2
|
| 21 | 1, 20 | eqtri 2644 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-tng 22389 df-tch 22969 |
| This theorem is referenced by: tchbas 23018 tchplusg 23019 tchmulr 23021 tchsca 23022 tchvsca 23023 tchip 23024 tchtopn 23025 tchnmfval 23027 tchds 23030 tchcph 23036 |
| Copyright terms: Public domain | W3C validator |