MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tchval Structured version   Visualization version   Unicode version

Theorem tchval 23017
Description: Define a function to augment a subcomplex pre-Hilbert space with norm. (Contributed by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
tchval.n  |-  G  =  (toCHil `  W )
tchval.v  |-  V  =  ( Base `  W
)
tchval.h  |-  .,  =  ( .i `  W )
Assertion
Ref Expression
tchval  |-  G  =  ( W toNrmGrp  ( x  e.  V  |->  ( sqr `  ( x  .,  x
) ) ) )
Distinct variable groups:    x,  .,    x, G   
x, V    x, W

Proof of Theorem tchval
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 tchval.n . 2  |-  G  =  (toCHil `  W )
2 id 22 . . . . 5  |-  ( w  =  W  ->  w  =  W )
3 fveq2 6191 . . . . . . 7  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
4 tchval.v . . . . . . 7  |-  V  =  ( Base `  W
)
53, 4syl6eqr 2674 . . . . . 6  |-  ( w  =  W  ->  ( Base `  w )  =  V )
6 fveq2 6191 . . . . . . . . 9  |-  ( w  =  W  ->  ( .i `  w )  =  ( .i `  W
) )
7 tchval.h . . . . . . . . 9  |-  .,  =  ( .i `  W )
86, 7syl6eqr 2674 . . . . . . . 8  |-  ( w  =  W  ->  ( .i `  w )  = 
.,  )
98oveqd 6667 . . . . . . 7  |-  ( w  =  W  ->  (
x ( .i `  w ) x )  =  ( x  .,  x ) )
109fveq2d 6195 . . . . . 6  |-  ( w  =  W  ->  ( sqr `  ( x ( .i `  w ) x ) )  =  ( sqr `  (
x  .,  x )
) )
115, 10mpteq12dv 4733 . . . . 5  |-  ( w  =  W  ->  (
x  e.  ( Base `  w )  |->  ( sqr `  ( x ( .i
`  w ) x ) ) )  =  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) )
122, 11oveq12d 6668 . . . 4  |-  ( w  =  W  ->  (
w toNrmGrp  ( x  e.  (
Base `  w )  |->  ( sqr `  (
x ( .i `  w ) x ) ) ) )  =  ( W toNrmGrp  ( x  e.  V  |->  ( sqr `  ( x  .,  x
) ) ) ) )
13 df-tch 22969 . . . 4  |- toCHil  =  ( w  e.  _V  |->  ( w toNrmGrp  ( x  e.  ( Base `  w
)  |->  ( sqr `  (
x ( .i `  w ) x ) ) ) ) )
14 ovex 6678 . . . 4  |-  ( W toNrmGrp  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) )  e. 
_V
1512, 13, 14fvmpt 6282 . . 3  |-  ( W  e.  _V  ->  (toCHil `  W )  =  ( W toNrmGrp  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) ) )
16 fvprc 6185 . . . 4  |-  ( -.  W  e.  _V  ->  (toCHil `  W )  =  (/) )
17 reldmtng 22442 . . . . 5  |-  Rel  dom toNrmGrp
1817ovprc1 6684 . . . 4  |-  ( -.  W  e.  _V  ->  ( W toNrmGrp  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) )  =  (/) )
1916, 18eqtr4d 2659 . . 3  |-  ( -.  W  e.  _V  ->  (toCHil `  W )  =  ( W toNrmGrp  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) ) )
2015, 19pm2.61i 176 . 2  |-  (toCHil `  W )  =  ( W toNrmGrp  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) )
211, 20eqtri 2644 1  |-  G  =  ( W toNrmGrp  ( x  e.  V  |->  ( sqr `  ( x  .,  x
) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   sqrcsqrt 13973   Basecbs 15857   .icip 15946   toNrmGrp ctng 22383  toCHilctch 22967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-tng 22389  df-tch 22969
This theorem is referenced by:  tchbas  23018  tchplusg  23019  tchmulr  23021  tchsca  23022  tchvsca  23023  tchip  23024  tchtopn  23025  tchnmfval  23027  tchds  23030  tchcph  23036
  Copyright terms: Public domain W3C validator