![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sucex | Structured version Visualization version GIF version |
Description: The successor of a set is a set. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
sucex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
sucex | ⊢ suc 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sucexg 7010 | . 2 ⊢ (𝐴 ∈ V → suc 𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ suc 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1990 Vcvv 3200 suc csuc 5725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-sn 4178 df-pr 4180 df-uni 4437 df-suc 5729 |
This theorem is referenced by: orduninsuc 7043 tfindsg 7060 tfinds2 7063 finds 7092 findsg 7093 finds2 7094 seqomlem1 7545 oasuc 7604 onasuc 7608 infensuc 8138 phplem4 8142 php 8144 inf0 8518 inf3lem1 8525 dfom3 8544 cantnflt 8569 cantnflem1 8586 cnfcom 8597 infxpenlem 8836 pwsdompw 9026 ackbij1lem5 9046 cfslb2n 9090 cfsmolem 9092 fin1a2lem12 9233 axdc4lem 9277 alephreg 9404 bnj986 31024 bnj1018 31032 dfon2lem7 31694 bj-1ex 32938 bj-2ex 32939 dford3lem2 37594 |
Copyright terms: Public domain | W3C validator |