MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucex Structured version   Visualization version   GIF version

Theorem sucex 7011
Description: The successor of a set is a set. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
sucex.1 𝐴 ∈ V
Assertion
Ref Expression
sucex suc 𝐴 ∈ V

Proof of Theorem sucex
StepHypRef Expression
1 sucex.1 . 2 𝐴 ∈ V
2 sucexg 7010 . 2 (𝐴 ∈ V → suc 𝐴 ∈ V)
31, 2ax-mp 5 1 suc 𝐴 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 1990  Vcvv 3200  suc csuc 5725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-pr 4180  df-uni 4437  df-suc 5729
This theorem is referenced by:  orduninsuc  7043  tfindsg  7060  tfinds2  7063  finds  7092  findsg  7093  finds2  7094  seqomlem1  7545  oasuc  7604  onasuc  7608  infensuc  8138  phplem4  8142  php  8144  inf0  8518  inf3lem1  8525  dfom3  8544  cantnflt  8569  cantnflem1  8586  cnfcom  8597  infxpenlem  8836  pwsdompw  9026  ackbij1lem5  9046  cfslb2n  9090  cfsmolem  9092  fin1a2lem12  9233  axdc4lem  9277  alephreg  9404  bnj986  31024  bnj1018  31032  dfon2lem7  31694  bj-1ex  32938  bj-2ex  32939  dford3lem2  37594
  Copyright terms: Public domain W3C validator