Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tosglb Structured version   Visualization version   GIF version

Theorem tosglb 29670
Description: Same theorem as toslub 29668, for infinimum. (Contributed by Thierry Arnoux, 17-Feb-2018.) (Revised by AV, 28-Sep-2020.)
Hypotheses
Ref Expression
tosglb.b 𝐵 = (Base‘𝐾)
tosglb.l < = (lt‘𝐾)
tosglb.1 (𝜑𝐾 ∈ Toset)
tosglb.2 (𝜑𝐴𝐵)
Assertion
Ref Expression
tosglb (𝜑 → ((glb‘𝐾)‘𝐴) = inf(𝐴, 𝐵, < ))

Proof of Theorem tosglb
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tosglb.b . . . . 5 𝐵 = (Base‘𝐾)
2 tosglb.l . . . . 5 < = (lt‘𝐾)
3 tosglb.1 . . . . 5 (𝜑𝐾 ∈ Toset)
4 tosglb.2 . . . . 5 (𝜑𝐴𝐵)
5 eqid 2622 . . . . 5 (le‘𝐾) = (le‘𝐾)
61, 2, 3, 4, 5tosglblem 29669 . . . 4 ((𝜑𝑎𝐵) → ((∀𝑏𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑐(le‘𝐾)𝑏𝑐(le‘𝐾)𝑎)) ↔ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
76riotabidva 6627 . . 3 (𝜑 → (𝑎𝐵 (∀𝑏𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑐(le‘𝐾)𝑏𝑐(le‘𝐾)𝑎))) = (𝑎𝐵 (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
8 eqid 2622 . . . 4 (glb‘𝐾) = (glb‘𝐾)
9 biid 251 . . . 4 ((∀𝑏𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑐(le‘𝐾)𝑏𝑐(le‘𝐾)𝑎)) ↔ (∀𝑏𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑐(le‘𝐾)𝑏𝑐(le‘𝐾)𝑎)))
101, 5, 8, 9, 3, 4glbval 16997 . . 3 (𝜑 → ((glb‘𝐾)‘𝐴) = (𝑎𝐵 (∀𝑏𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑐(le‘𝐾)𝑏𝑐(le‘𝐾)𝑎))))
111, 5, 2tosso 17036 . . . . . . 7 (𝐾 ∈ Toset → (𝐾 ∈ Toset ↔ ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ (le‘𝐾))))
1211ibi 256 . . . . . 6 (𝐾 ∈ Toset → ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ (le‘𝐾)))
1312simpld 475 . . . . 5 (𝐾 ∈ Toset → < Or 𝐵)
14 cnvso 5674 . . . . 5 ( < Or 𝐵 < Or 𝐵)
1513, 14sylib 208 . . . 4 (𝐾 ∈ Toset → < Or 𝐵)
16 id 22 . . . . 5 ( < Or 𝐵 < Or 𝐵)
1716supval2 8361 . . . 4 ( < Or 𝐵 → sup(𝐴, 𝐵, < ) = (𝑎𝐵 (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
183, 15, 173syl 18 . . 3 (𝜑 → sup(𝐴, 𝐵, < ) = (𝑎𝐵 (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
197, 10, 183eqtr4d 2666 . 2 (𝜑 → ((glb‘𝐾)‘𝐴) = sup(𝐴, 𝐵, < ))
20 df-inf 8349 . . . 4 inf(𝐴, 𝐵, < ) = sup(𝐴, 𝐵, < )
2120eqcomi 2631 . . 3 sup(𝐴, 𝐵, < ) = inf(𝐴, 𝐵, < )
2221a1i 11 . 2 (𝜑 → sup(𝐴, 𝐵, < ) = inf(𝐴, 𝐵, < ))
2319, 22eqtrd 2656 1 (𝜑 → ((glb‘𝐾)‘𝐴) = inf(𝐴, 𝐵, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  wss 3574   class class class wbr 4653   I cid 5023   Or wor 5034  ccnv 5113  cres 5116  cfv 5888  crio 6610  supcsup 8346  infcinf 8347  Basecbs 15857  lecple 15948  ltcplt 16941  glbcglb 16943  Tosetctos 17033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-sup 8348  df-inf 8349  df-preset 16928  df-poset 16946  df-plt 16958  df-glb 16975  df-toset 17034
This theorem is referenced by:  xrsp0  29681
  Copyright terms: Public domain W3C validator