![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tosglb | Structured version Visualization version GIF version |
Description: Same theorem as toslub 29668, for infinimum. (Contributed by Thierry Arnoux, 17-Feb-2018.) (Revised by AV, 28-Sep-2020.) |
Ref | Expression |
---|---|
tosglb.b | ⊢ 𝐵 = (Base‘𝐾) |
tosglb.l | ⊢ < = (lt‘𝐾) |
tosglb.1 | ⊢ (𝜑 → 𝐾 ∈ Toset) |
tosglb.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
tosglb | ⊢ (𝜑 → ((glb‘𝐾)‘𝐴) = inf(𝐴, 𝐵, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tosglb.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | tosglb.l | . . . . 5 ⊢ < = (lt‘𝐾) | |
3 | tosglb.1 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Toset) | |
4 | tosglb.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
5 | eqid 2622 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
6 | 1, 2, 3, 4, 5 | tosglblem 29669 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((∀𝑏 ∈ 𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑐(le‘𝐾)𝑏 → 𝑐(le‘𝐾)𝑎)) ↔ (∀𝑏 ∈ 𝐴 ¬ 𝑎◡ < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏◡ < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏◡ < 𝑑)))) |
7 | 6 | riotabidva 6627 | . . 3 ⊢ (𝜑 → (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑐(le‘𝐾)𝑏 → 𝑐(le‘𝐾)𝑎))) = (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 ¬ 𝑎◡ < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏◡ < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏◡ < 𝑑)))) |
8 | eqid 2622 | . . . 4 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
9 | biid 251 | . . . 4 ⊢ ((∀𝑏 ∈ 𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑐(le‘𝐾)𝑏 → 𝑐(le‘𝐾)𝑎)) ↔ (∀𝑏 ∈ 𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑐(le‘𝐾)𝑏 → 𝑐(le‘𝐾)𝑎))) | |
10 | 1, 5, 8, 9, 3, 4 | glbval 16997 | . . 3 ⊢ (𝜑 → ((glb‘𝐾)‘𝐴) = (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑐(le‘𝐾)𝑏 → 𝑐(le‘𝐾)𝑎)))) |
11 | 1, 5, 2 | tosso 17036 | . . . . . . 7 ⊢ (𝐾 ∈ Toset → (𝐾 ∈ Toset ↔ ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ (le‘𝐾)))) |
12 | 11 | ibi 256 | . . . . . 6 ⊢ (𝐾 ∈ Toset → ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ (le‘𝐾))) |
13 | 12 | simpld 475 | . . . . 5 ⊢ (𝐾 ∈ Toset → < Or 𝐵) |
14 | cnvso 5674 | . . . . 5 ⊢ ( < Or 𝐵 ↔ ◡ < Or 𝐵) | |
15 | 13, 14 | sylib 208 | . . . 4 ⊢ (𝐾 ∈ Toset → ◡ < Or 𝐵) |
16 | id 22 | . . . . 5 ⊢ (◡ < Or 𝐵 → ◡ < Or 𝐵) | |
17 | 16 | supval2 8361 | . . . 4 ⊢ (◡ < Or 𝐵 → sup(𝐴, 𝐵, ◡ < ) = (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 ¬ 𝑎◡ < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏◡ < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏◡ < 𝑑)))) |
18 | 3, 15, 17 | 3syl 18 | . . 3 ⊢ (𝜑 → sup(𝐴, 𝐵, ◡ < ) = (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 ¬ 𝑎◡ < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏◡ < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏◡ < 𝑑)))) |
19 | 7, 10, 18 | 3eqtr4d 2666 | . 2 ⊢ (𝜑 → ((glb‘𝐾)‘𝐴) = sup(𝐴, 𝐵, ◡ < )) |
20 | df-inf 8349 | . . . 4 ⊢ inf(𝐴, 𝐵, < ) = sup(𝐴, 𝐵, ◡ < ) | |
21 | 20 | eqcomi 2631 | . . 3 ⊢ sup(𝐴, 𝐵, ◡ < ) = inf(𝐴, 𝐵, < ) |
22 | 21 | a1i 11 | . 2 ⊢ (𝜑 → sup(𝐴, 𝐵, ◡ < ) = inf(𝐴, 𝐵, < )) |
23 | 19, 22 | eqtrd 2656 | 1 ⊢ (𝜑 → ((glb‘𝐾)‘𝐴) = inf(𝐴, 𝐵, < )) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 ⊆ wss 3574 class class class wbr 4653 I cid 5023 Or wor 5034 ◡ccnv 5113 ↾ cres 5116 ‘cfv 5888 ℩crio 6610 supcsup 8346 infcinf 8347 Basecbs 15857 lecple 15948 ltcplt 16941 glbcglb 16943 Tosetctos 17033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-sup 8348 df-inf 8349 df-preset 16928 df-poset 16946 df-plt 16958 df-glb 16975 df-toset 17034 |
This theorem is referenced by: xrsp0 29681 |
Copyright terms: Public domain | W3C validator |