MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txbasex Structured version   Visualization version   GIF version

Theorem txbasex 21369
Description: The basis for the product topology is a set. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypothesis
Ref Expression
txval.1 𝐵 = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))
Assertion
Ref Expression
txbasex ((𝑅𝑉𝑆𝑊) → 𝐵 ∈ V)
Distinct variable groups:   𝑥,𝑦,𝑅   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem txbasex
StepHypRef Expression
1 txval.1 . . . 4 𝐵 = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))
2 eqid 2622 . . . 4 𝑅 = 𝑅
3 eqid 2622 . . . 4 𝑆 = 𝑆
41, 2, 3txuni2 21368 . . 3 ( 𝑅 × 𝑆) = 𝐵
5 uniexg 6955 . . . 4 (𝑅𝑉 𝑅 ∈ V)
6 uniexg 6955 . . . 4 (𝑆𝑊 𝑆 ∈ V)
7 xpexg 6960 . . . 4 (( 𝑅 ∈ V ∧ 𝑆 ∈ V) → ( 𝑅 × 𝑆) ∈ V)
85, 6, 7syl2an 494 . . 3 ((𝑅𝑉𝑆𝑊) → ( 𝑅 × 𝑆) ∈ V)
94, 8syl5eqelr 2706 . 2 ((𝑅𝑉𝑆𝑊) → 𝐵 ∈ V)
10 uniexb 6973 . 2 (𝐵 ∈ V ↔ 𝐵 ∈ V)
119, 10sylibr 224 1 ((𝑅𝑉𝑆𝑊) → 𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200   cuni 4436   × cxp 5112  ran crn 5115  cmpt2 6652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169
This theorem is referenced by:  txbas  21370  eltx  21371  txtopon  21394  txopn  21405  txss12  21408  txbasval  21409  txrest  21434  sxsiga  30254  elsx  30257  mbfmco2  30327
  Copyright terms: Public domain W3C validator