![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tz7.48-3 | Structured version Visualization version GIF version |
Description: Proposition 7.48(3) of [TakeutiZaring] p. 51. (Contributed by NM, 9-Feb-1997.) |
Ref | Expression |
---|---|
tz7.48.1 | ⊢ 𝐹 Fn On |
Ref | Expression |
---|---|
tz7.48-3 | ⊢ (∀𝑥 ∈ On (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → ¬ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onprc 6984 | . . . 4 ⊢ ¬ On ∈ V | |
2 | tz7.48.1 | . . . . . 6 ⊢ 𝐹 Fn On | |
3 | fndm 5990 | . . . . . 6 ⊢ (𝐹 Fn On → dom 𝐹 = On) | |
4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ dom 𝐹 = On |
5 | 4 | eleq1i 2692 | . . . 4 ⊢ (dom 𝐹 ∈ V ↔ On ∈ V) |
6 | 1, 5 | mtbir 313 | . . 3 ⊢ ¬ dom 𝐹 ∈ V |
7 | 2 | tz7.48-2 7537 | . . . 4 ⊢ (∀𝑥 ∈ On (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → Fun ◡𝐹) |
8 | funrnex 7133 | . . . . . 6 ⊢ (dom ◡𝐹 ∈ V → (Fun ◡𝐹 → ran ◡𝐹 ∈ V)) | |
9 | 8 | com12 32 | . . . . 5 ⊢ (Fun ◡𝐹 → (dom ◡𝐹 ∈ V → ran ◡𝐹 ∈ V)) |
10 | df-rn 5125 | . . . . . 6 ⊢ ran 𝐹 = dom ◡𝐹 | |
11 | 10 | eleq1i 2692 | . . . . 5 ⊢ (ran 𝐹 ∈ V ↔ dom ◡𝐹 ∈ V) |
12 | dfdm4 5316 | . . . . . 6 ⊢ dom 𝐹 = ran ◡𝐹 | |
13 | 12 | eleq1i 2692 | . . . . 5 ⊢ (dom 𝐹 ∈ V ↔ ran ◡𝐹 ∈ V) |
14 | 9, 11, 13 | 3imtr4g 285 | . . . 4 ⊢ (Fun ◡𝐹 → (ran 𝐹 ∈ V → dom 𝐹 ∈ V)) |
15 | 7, 14 | syl 17 | . . 3 ⊢ (∀𝑥 ∈ On (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → (ran 𝐹 ∈ V → dom 𝐹 ∈ V)) |
16 | 6, 15 | mtoi 190 | . 2 ⊢ (∀𝑥 ∈ On (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → ¬ ran 𝐹 ∈ V) |
17 | 2 | tz7.48-1 7538 | . . 3 ⊢ (∀𝑥 ∈ On (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → ran 𝐹 ⊆ 𝐴) |
18 | ssexg 4804 | . . . 4 ⊢ ((ran 𝐹 ⊆ 𝐴 ∧ 𝐴 ∈ V) → ran 𝐹 ∈ V) | |
19 | 18 | ex 450 | . . 3 ⊢ (ran 𝐹 ⊆ 𝐴 → (𝐴 ∈ V → ran 𝐹 ∈ V)) |
20 | 17, 19 | syl 17 | . 2 ⊢ (∀𝑥 ∈ On (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → (𝐴 ∈ V → ran 𝐹 ∈ V)) |
21 | 16, 20 | mtod 189 | 1 ⊢ (∀𝑥 ∈ On (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → ¬ 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1483 ∈ wcel 1990 ∀wral 2912 Vcvv 3200 ∖ cdif 3571 ⊆ wss 3574 ◡ccnv 5113 dom cdm 5114 ran crn 5115 “ cima 5117 Oncon0 5723 Fun wfun 5882 Fn wfn 5883 ‘cfv 5888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 |
This theorem is referenced by: tz7.49 7540 |
Copyright terms: Public domain | W3C validator |