MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.48-3 Structured version   Visualization version   GIF version

Theorem tz7.48-3 7539
Description: Proposition 7.48(3) of [TakeutiZaring] p. 51. (Contributed by NM, 9-Feb-1997.)
Hypothesis
Ref Expression
tz7.48.1 𝐹 Fn On
Assertion
Ref Expression
tz7.48-3 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ 𝐴 ∈ V)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem tz7.48-3
StepHypRef Expression
1 onprc 6984 . . . 4 ¬ On ∈ V
2 tz7.48.1 . . . . . 6 𝐹 Fn On
3 fndm 5990 . . . . . 6 (𝐹 Fn On → dom 𝐹 = On)
42, 3ax-mp 5 . . . . 5 dom 𝐹 = On
54eleq1i 2692 . . . 4 (dom 𝐹 ∈ V ↔ On ∈ V)
61, 5mtbir 313 . . 3 ¬ dom 𝐹 ∈ V
72tz7.48-2 7537 . . . 4 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → Fun 𝐹)
8 funrnex 7133 . . . . . 6 (dom 𝐹 ∈ V → (Fun 𝐹 → ran 𝐹 ∈ V))
98com12 32 . . . . 5 (Fun 𝐹 → (dom 𝐹 ∈ V → ran 𝐹 ∈ V))
10 df-rn 5125 . . . . . 6 ran 𝐹 = dom 𝐹
1110eleq1i 2692 . . . . 5 (ran 𝐹 ∈ V ↔ dom 𝐹 ∈ V)
12 dfdm4 5316 . . . . . 6 dom 𝐹 = ran 𝐹
1312eleq1i 2692 . . . . 5 (dom 𝐹 ∈ V ↔ ran 𝐹 ∈ V)
149, 11, 133imtr4g 285 . . . 4 (Fun 𝐹 → (ran 𝐹 ∈ V → dom 𝐹 ∈ V))
157, 14syl 17 . . 3 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → (ran 𝐹 ∈ V → dom 𝐹 ∈ V))
166, 15mtoi 190 . 2 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ ran 𝐹 ∈ V)
172tz7.48-1 7538 . . 3 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ran 𝐹𝐴)
18 ssexg 4804 . . . 4 ((ran 𝐹𝐴𝐴 ∈ V) → ran 𝐹 ∈ V)
1918ex 450 . . 3 (ran 𝐹𝐴 → (𝐴 ∈ V → ran 𝐹 ∈ V))
2017, 19syl 17 . 2 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → (𝐴 ∈ V → ran 𝐹 ∈ V))
2116, 20mtod 189 1 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cdif 3571  wss 3574  ccnv 5113  dom cdm 5114  ran crn 5115  cima 5117  Oncon0 5723  Fun wfun 5882   Fn wfn 5883  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by:  tz7.49  7540
  Copyright terms: Public domain W3C validator