MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uffixfr Structured version   Visualization version   GIF version

Theorem uffixfr 21727
Description: An ultrafilter is either fixed or free. A fixed ultrafilter is called principal (generated by a single element 𝐴), and a free ultrafilter is called nonprincipal (having empty intersection). Note that examples of free ultrafilters cannot be defined in ZFC without some form of global choice. (Contributed by Jeff Hankins, 4-Dec-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
uffixfr (𝐹 ∈ (UFil‘𝑋) → (𝐴 𝐹𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝑋

Proof of Theorem uffixfr
StepHypRef Expression
1 simpl 473 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → 𝐹 ∈ (UFil‘𝑋))
2 ufilfil 21708 . . . . . . . 8 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
3 filtop 21659 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
42, 3syl 17 . . . . . . 7 (𝐹 ∈ (UFil‘𝑋) → 𝑋𝐹)
54adantr 481 . . . . . 6 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → 𝑋𝐹)
6 filn0 21666 . . . . . . . . 9 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅)
7 intssuni 4499 . . . . . . . . 9 (𝐹 ≠ ∅ → 𝐹 𝐹)
82, 6, 73syl 18 . . . . . . . 8 (𝐹 ∈ (UFil‘𝑋) → 𝐹 𝐹)
9 filunibas 21685 . . . . . . . . 9 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
102, 9syl 17 . . . . . . . 8 (𝐹 ∈ (UFil‘𝑋) → 𝐹 = 𝑋)
118, 10sseqtrd 3641 . . . . . . 7 (𝐹 ∈ (UFil‘𝑋) → 𝐹𝑋)
1211sselda 3603 . . . . . 6 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → 𝐴𝑋)
13 uffix 21725 . . . . . 6 ((𝑋𝐹𝐴𝑋) → ({{𝐴}} ∈ (fBas‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} = (𝑋filGen{{𝐴}})))
145, 12, 13syl2anc 693 . . . . 5 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → ({{𝐴}} ∈ (fBas‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} = (𝑋filGen{{𝐴}})))
1514simprd 479 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → {𝑥 ∈ 𝒫 𝑋𝐴𝑥} = (𝑋filGen{{𝐴}}))
1614simpld 475 . . . . 5 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → {{𝐴}} ∈ (fBas‘𝑋))
17 fgcl 21682 . . . . 5 ({{𝐴}} ∈ (fBas‘𝑋) → (𝑋filGen{{𝐴}}) ∈ (Fil‘𝑋))
1816, 17syl 17 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → (𝑋filGen{{𝐴}}) ∈ (Fil‘𝑋))
1915, 18eqeltrd 2701 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ∈ (Fil‘𝑋))
202adantr 481 . . . . 5 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → 𝐹 ∈ (Fil‘𝑋))
21 filsspw 21655 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)
2220, 21syl 17 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → 𝐹 ⊆ 𝒫 𝑋)
23 elintg 4483 . . . . . 6 (𝐴 𝐹 → (𝐴 𝐹 ↔ ∀𝑥𝐹 𝐴𝑥))
2423ibi 256 . . . . 5 (𝐴 𝐹 → ∀𝑥𝐹 𝐴𝑥)
2524adantl 482 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → ∀𝑥𝐹 𝐴𝑥)
26 ssrab 3680 . . . 4 (𝐹 ⊆ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ ∀𝑥𝐹 𝐴𝑥))
2722, 25, 26sylanbrc 698 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → 𝐹 ⊆ {𝑥 ∈ 𝒫 𝑋𝐴𝑥})
28 ufilmax 21711 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ {𝑥 ∈ 𝒫 𝑋𝐴𝑥}) → 𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥})
291, 19, 27, 28syl3anc 1326 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → 𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥})
30 eqimss 3657 . . . . 5 (𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥} → 𝐹 ⊆ {𝑥 ∈ 𝒫 𝑋𝐴𝑥})
3130adantl 482 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥}) → 𝐹 ⊆ {𝑥 ∈ 𝒫 𝑋𝐴𝑥})
3226simprbi 480 . . . 4 (𝐹 ⊆ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} → ∀𝑥𝐹 𝐴𝑥)
3331, 32syl 17 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥}) → ∀𝑥𝐹 𝐴𝑥)
34 eleq2 2690 . . . . . 6 (𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥} → (𝑋𝐹𝑋 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥}))
3534biimpac 503 . . . . 5 ((𝑋𝐹𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥}) → 𝑋 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥})
364, 35sylan 488 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥}) → 𝑋 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥})
37 eleq2 2690 . . . . . 6 (𝑥 = 𝑋 → (𝐴𝑥𝐴𝑋))
3837elrab 3363 . . . . 5 (𝑋 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ↔ (𝑋 ∈ 𝒫 𝑋𝐴𝑋))
3938simprbi 480 . . . 4 (𝑋 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} → 𝐴𝑋)
40 elintg 4483 . . . 4 (𝐴𝑋 → (𝐴 𝐹 ↔ ∀𝑥𝐹 𝐴𝑥))
4136, 39, 403syl 18 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥}) → (𝐴 𝐹 ↔ ∀𝑥𝐹 𝐴𝑥))
4233, 41mpbird 247 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥}) → 𝐴 𝐹)
4329, 42impbida 877 1 (𝐹 ∈ (UFil‘𝑋) → (𝐴 𝐹𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  {crab 2916  wss 3574  c0 3915  𝒫 cpw 4158  {csn 4177   cuni 4436   cint 4475  cfv 5888  (class class class)co 6650  fBascfbas 19734  filGencfg 19735  Filcfil 21649  UFilcufil 21703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-fbas 19743  df-fg 19744  df-fil 21650  df-ufil 21705
This theorem is referenced by:  uffix2  21728  uffixsn  21729
  Copyright terms: Public domain W3C validator