| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uffixfr | Structured version Visualization version Unicode version | ||
| Description: An ultrafilter is either
fixed or free. A fixed ultrafilter is called
principal (generated by a single element |
| Ref | Expression |
|---|---|
| uffixfr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 473 |
. . 3
| |
| 2 | ufilfil 21708 |
. . . . . . . 8
| |
| 3 | filtop 21659 |
. . . . . . . 8
| |
| 4 | 2, 3 | syl 17 |
. . . . . . 7
|
| 5 | 4 | adantr 481 |
. . . . . 6
|
| 6 | filn0 21666 |
. . . . . . . . 9
| |
| 7 | intssuni 4499 |
. . . . . . . . 9
| |
| 8 | 2, 6, 7 | 3syl 18 |
. . . . . . . 8
|
| 9 | filunibas 21685 |
. . . . . . . . 9
| |
| 10 | 2, 9 | syl 17 |
. . . . . . . 8
|
| 11 | 8, 10 | sseqtrd 3641 |
. . . . . . 7
|
| 12 | 11 | sselda 3603 |
. . . . . 6
|
| 13 | uffix 21725 |
. . . . . 6
| |
| 14 | 5, 12, 13 | syl2anc 693 |
. . . . 5
|
| 15 | 14 | simprd 479 |
. . . 4
|
| 16 | 14 | simpld 475 |
. . . . 5
|
| 17 | fgcl 21682 |
. . . . 5
| |
| 18 | 16, 17 | syl 17 |
. . . 4
|
| 19 | 15, 18 | eqeltrd 2701 |
. . 3
|
| 20 | 2 | adantr 481 |
. . . . 5
|
| 21 | filsspw 21655 |
. . . . 5
| |
| 22 | 20, 21 | syl 17 |
. . . 4
|
| 23 | elintg 4483 |
. . . . . 6
| |
| 24 | 23 | ibi 256 |
. . . . 5
|
| 25 | 24 | adantl 482 |
. . . 4
|
| 26 | ssrab 3680 |
. . . 4
| |
| 27 | 22, 25, 26 | sylanbrc 698 |
. . 3
|
| 28 | ufilmax 21711 |
. . 3
| |
| 29 | 1, 19, 27, 28 | syl3anc 1326 |
. 2
|
| 30 | eqimss 3657 |
. . . . 5
| |
| 31 | 30 | adantl 482 |
. . . 4
|
| 32 | 26 | simprbi 480 |
. . . 4
|
| 33 | 31, 32 | syl 17 |
. . 3
|
| 34 | eleq2 2690 |
. . . . . 6
| |
| 35 | 34 | biimpac 503 |
. . . . 5
|
| 36 | 4, 35 | sylan 488 |
. . . 4
|
| 37 | eleq2 2690 |
. . . . . 6
| |
| 38 | 37 | elrab 3363 |
. . . . 5
|
| 39 | 38 | simprbi 480 |
. . . 4
|
| 40 | elintg 4483 |
. . . 4
| |
| 41 | 36, 39, 40 | 3syl 18 |
. . 3
|
| 42 | 33, 41 | mpbird 247 |
. 2
|
| 43 | 29, 42 | impbida 877 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-fbas 19743 df-fg 19744 df-fil 21650 df-ufil 21705 |
| This theorem is referenced by: uffix2 21728 uffixsn 21729 |
| Copyright terms: Public domain | W3C validator |