MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufildr Structured version   Visualization version   GIF version

Theorem ufildr 21735
Description: An ultrafilter gives rise to a connected door topology. (Contributed by Jeff Hankins, 6-Dec-2009.) (Revised by Stefan O'Rear, 3-Aug-2015.)
Hypothesis
Ref Expression
ufildr.1 𝐽 = (𝐹 ∪ {∅})
Assertion
Ref Expression
ufildr (𝐹 ∈ (UFil‘𝑋) → (𝐽 ∪ (Clsd‘𝐽)) = 𝒫 𝑋)

Proof of Theorem ufildr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elssuni 4467 . . . . . 6 (𝑥𝐽𝑥 𝐽)
2 ufildr.1 . . . . . . . . . 10 𝐽 = (𝐹 ∪ {∅})
32unieqi 4445 . . . . . . . . 9 𝐽 = (𝐹 ∪ {∅})
4 uniun 4456 . . . . . . . . . 10 (𝐹 ∪ {∅}) = ( 𝐹 {∅})
5 0ex 4790 . . . . . . . . . . . 12 ∅ ∈ V
65unisn 4451 . . . . . . . . . . 11 {∅} = ∅
76uneq2i 3764 . . . . . . . . . 10 ( 𝐹 {∅}) = ( 𝐹 ∪ ∅)
8 un0 3967 . . . . . . . . . 10 ( 𝐹 ∪ ∅) = 𝐹
94, 7, 83eqtri 2648 . . . . . . . . 9 (𝐹 ∪ {∅}) = 𝐹
103, 9eqtr2i 2645 . . . . . . . 8 𝐹 = 𝐽
11 ufilfil 21708 . . . . . . . . 9 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
12 filunibas 21685 . . . . . . . . 9 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
1311, 12syl 17 . . . . . . . 8 (𝐹 ∈ (UFil‘𝑋) → 𝐹 = 𝑋)
1410, 13syl5reqr 2671 . . . . . . 7 (𝐹 ∈ (UFil‘𝑋) → 𝑋 = 𝐽)
1514sseq2d 3633 . . . . . 6 (𝐹 ∈ (UFil‘𝑋) → (𝑥𝑋𝑥 𝐽))
161, 15syl5ibr 236 . . . . 5 (𝐹 ∈ (UFil‘𝑋) → (𝑥𝐽𝑥𝑋))
17 eqid 2622 . . . . . . 7 𝐽 = 𝐽
1817cldss 20833 . . . . . 6 (𝑥 ∈ (Clsd‘𝐽) → 𝑥 𝐽)
1918, 15syl5ibr 236 . . . . 5 (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ (Clsd‘𝐽) → 𝑥𝑋))
2016, 19jaod 395 . . . 4 (𝐹 ∈ (UFil‘𝑋) → ((𝑥𝐽𝑥 ∈ (Clsd‘𝐽)) → 𝑥𝑋))
21 ufilss 21709 . . . . . 6 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → (𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹))
22 ssun1 3776 . . . . . . . . . 10 𝐹 ⊆ (𝐹 ∪ {∅})
2322, 2sseqtr4i 3638 . . . . . . . . 9 𝐹𝐽
2423a1i 11 . . . . . . . 8 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → 𝐹𝐽)
2524sseld 3602 . . . . . . 7 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → (𝑥𝐹𝑥𝐽))
2624sseld 3602 . . . . . . . 8 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → ((𝑋𝑥) ∈ 𝐹 → (𝑋𝑥) ∈ 𝐽))
27 filconn 21687 . . . . . . . . . . . . 13 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ {∅}) ∈ Conn)
28 conntop 21220 . . . . . . . . . . . . 13 ((𝐹 ∪ {∅}) ∈ Conn → (𝐹 ∪ {∅}) ∈ Top)
2911, 27, 283syl 18 . . . . . . . . . . . 12 (𝐹 ∈ (UFil‘𝑋) → (𝐹 ∪ {∅}) ∈ Top)
302, 29syl5eqel 2705 . . . . . . . . . . 11 (𝐹 ∈ (UFil‘𝑋) → 𝐽 ∈ Top)
3130adantr 481 . . . . . . . . . 10 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → 𝐽 ∈ Top)
3215biimpa 501 . . . . . . . . . 10 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → 𝑥 𝐽)
3317iscld2 20832 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑥 𝐽) → (𝑥 ∈ (Clsd‘𝐽) ↔ ( 𝐽𝑥) ∈ 𝐽))
3431, 32, 33syl2anc 693 . . . . . . . . 9 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → (𝑥 ∈ (Clsd‘𝐽) ↔ ( 𝐽𝑥) ∈ 𝐽))
3514difeq1d 3727 . . . . . . . . . . 11 (𝐹 ∈ (UFil‘𝑋) → (𝑋𝑥) = ( 𝐽𝑥))
3635eleq1d 2686 . . . . . . . . . 10 (𝐹 ∈ (UFil‘𝑋) → ((𝑋𝑥) ∈ 𝐽 ↔ ( 𝐽𝑥) ∈ 𝐽))
3736adantr 481 . . . . . . . . 9 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → ((𝑋𝑥) ∈ 𝐽 ↔ ( 𝐽𝑥) ∈ 𝐽))
3834, 37bitr4d 271 . . . . . . . 8 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → (𝑥 ∈ (Clsd‘𝐽) ↔ (𝑋𝑥) ∈ 𝐽))
3926, 38sylibrd 249 . . . . . . 7 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → ((𝑋𝑥) ∈ 𝐹𝑥 ∈ (Clsd‘𝐽)))
4025, 39orim12d 883 . . . . . 6 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → ((𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹) → (𝑥𝐽𝑥 ∈ (Clsd‘𝐽))))
4121, 40mpd 15 . . . . 5 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → (𝑥𝐽𝑥 ∈ (Clsd‘𝐽)))
4241ex 450 . . . 4 (𝐹 ∈ (UFil‘𝑋) → (𝑥𝑋 → (𝑥𝐽𝑥 ∈ (Clsd‘𝐽))))
4320, 42impbid 202 . . 3 (𝐹 ∈ (UFil‘𝑋) → ((𝑥𝐽𝑥 ∈ (Clsd‘𝐽)) ↔ 𝑥𝑋))
44 elun 3753 . . 3 (𝑥 ∈ (𝐽 ∪ (Clsd‘𝐽)) ↔ (𝑥𝐽𝑥 ∈ (Clsd‘𝐽)))
45 selpw 4165 . . 3 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
4643, 44, 453bitr4g 303 . 2 (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ (𝐽 ∪ (Clsd‘𝐽)) ↔ 𝑥 ∈ 𝒫 𝑋))
4746eqrdv 2620 1 (𝐹 ∈ (UFil‘𝑋) → (𝐽 ∪ (Clsd‘𝐽)) = 𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  cdif 3571  cun 3572  wss 3574  c0 3915  𝒫 cpw 4158  {csn 4177   cuni 4436  cfv 5888  Topctop 20698  Clsdccld 20820  Conncconn 21214  Filcfil 21649  UFilcufil 21703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-fbas 19743  df-top 20699  df-cld 20823  df-conn 21215  df-fil 21650  df-ufil 21705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator