| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ufildr | Structured version Visualization version Unicode version | ||
| Description: An ultrafilter gives rise to a connected door topology. (Contributed by Jeff Hankins, 6-Dec-2009.) (Revised by Stefan O'Rear, 3-Aug-2015.) |
| Ref | Expression |
|---|---|
| ufildr.1 |
|
| Ref | Expression |
|---|---|
| ufildr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elssuni 4467 |
. . . . . 6
| |
| 2 | ufildr.1 |
. . . . . . . . . 10
| |
| 3 | 2 | unieqi 4445 |
. . . . . . . . 9
|
| 4 | uniun 4456 |
. . . . . . . . . 10
| |
| 5 | 0ex 4790 |
. . . . . . . . . . . 12
| |
| 6 | 5 | unisn 4451 |
. . . . . . . . . . 11
|
| 7 | 6 | uneq2i 3764 |
. . . . . . . . . 10
|
| 8 | un0 3967 |
. . . . . . . . . 10
| |
| 9 | 4, 7, 8 | 3eqtri 2648 |
. . . . . . . . 9
|
| 10 | 3, 9 | eqtr2i 2645 |
. . . . . . . 8
|
| 11 | ufilfil 21708 |
. . . . . . . . 9
| |
| 12 | filunibas 21685 |
. . . . . . . . 9
| |
| 13 | 11, 12 | syl 17 |
. . . . . . . 8
|
| 14 | 10, 13 | syl5reqr 2671 |
. . . . . . 7
|
| 15 | 14 | sseq2d 3633 |
. . . . . 6
|
| 16 | 1, 15 | syl5ibr 236 |
. . . . 5
|
| 17 | eqid 2622 |
. . . . . . 7
| |
| 18 | 17 | cldss 20833 |
. . . . . 6
|
| 19 | 18, 15 | syl5ibr 236 |
. . . . 5
|
| 20 | 16, 19 | jaod 395 |
. . . 4
|
| 21 | ufilss 21709 |
. . . . . 6
| |
| 22 | ssun1 3776 |
. . . . . . . . . 10
| |
| 23 | 22, 2 | sseqtr4i 3638 |
. . . . . . . . 9
|
| 24 | 23 | a1i 11 |
. . . . . . . 8
|
| 25 | 24 | sseld 3602 |
. . . . . . 7
|
| 26 | 24 | sseld 3602 |
. . . . . . . 8
|
| 27 | filconn 21687 |
. . . . . . . . . . . . 13
| |
| 28 | conntop 21220 |
. . . . . . . . . . . . 13
| |
| 29 | 11, 27, 28 | 3syl 18 |
. . . . . . . . . . . 12
|
| 30 | 2, 29 | syl5eqel 2705 |
. . . . . . . . . . 11
|
| 31 | 30 | adantr 481 |
. . . . . . . . . 10
|
| 32 | 15 | biimpa 501 |
. . . . . . . . . 10
|
| 33 | 17 | iscld2 20832 |
. . . . . . . . . 10
|
| 34 | 31, 32, 33 | syl2anc 693 |
. . . . . . . . 9
|
| 35 | 14 | difeq1d 3727 |
. . . . . . . . . . 11
|
| 36 | 35 | eleq1d 2686 |
. . . . . . . . . 10
|
| 37 | 36 | adantr 481 |
. . . . . . . . 9
|
| 38 | 34, 37 | bitr4d 271 |
. . . . . . . 8
|
| 39 | 26, 38 | sylibrd 249 |
. . . . . . 7
|
| 40 | 25, 39 | orim12d 883 |
. . . . . 6
|
| 41 | 21, 40 | mpd 15 |
. . . . 5
|
| 42 | 41 | ex 450 |
. . . 4
|
| 43 | 20, 42 | impbid 202 |
. . 3
|
| 44 | elun 3753 |
. . 3
| |
| 45 | selpw 4165 |
. . 3
| |
| 46 | 43, 44, 45 | 3bitr4g 303 |
. 2
|
| 47 | 46 | eqrdv 2620 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 df-fbas 19743 df-top 20699 df-cld 20823 df-conn 21215 df-fil 21650 df-ufil 21705 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |