MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufilen Structured version   Visualization version   GIF version

Theorem ufilen 21734
Description: Any infinite set has an ultrafilter on it whose elements are of the same cardinality as the set. Any such ultrafilter is necessarily free. (Contributed by Jeff Hankins, 7-Dec-2009.) (Revised by Stefan O'Rear, 3-Aug-2015.)
Assertion
Ref Expression
ufilen (ω ≼ 𝑋 → ∃𝑓 ∈ (UFil‘𝑋)∀𝑥𝑓 𝑥𝑋)
Distinct variable group:   𝑥,𝑓,𝑋

Proof of Theorem ufilen
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 reldom 7961 . . . . . 6 Rel ≼
21brrelex2i 5159 . . . . 5 (ω ≼ 𝑋𝑋 ∈ V)
3 numth3 9292 . . . . 5 (𝑋 ∈ V → 𝑋 ∈ dom card)
42, 3syl 17 . . . 4 (ω ≼ 𝑋𝑋 ∈ dom card)
5 csdfil 21698 . . . 4 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ∈ (Fil‘𝑋))
64, 5mpancom 703 . . 3 (ω ≼ 𝑋 → {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ∈ (Fil‘𝑋))
7 filssufil 21716 . . 3 ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ∈ (Fil‘𝑋) → ∃𝑓 ∈ (UFil‘𝑋){𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓)
86, 7syl 17 . 2 (ω ≼ 𝑋 → ∃𝑓 ∈ (UFil‘𝑋){𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓)
9 elfvex 6221 . . . . . . 7 (𝑓 ∈ (UFil‘𝑋) → 𝑋 ∈ V)
109ad2antlr 763 . . . . . 6 (((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) ∧ 𝑥𝑓) → 𝑋 ∈ V)
11 ufilfil 21708 . . . . . . . 8 (𝑓 ∈ (UFil‘𝑋) → 𝑓 ∈ (Fil‘𝑋))
12 filelss 21656 . . . . . . . 8 ((𝑓 ∈ (Fil‘𝑋) ∧ 𝑥𝑓) → 𝑥𝑋)
1311, 12sylan 488 . . . . . . 7 ((𝑓 ∈ (UFil‘𝑋) ∧ 𝑥𝑓) → 𝑥𝑋)
1413adantll 750 . . . . . 6 (((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) ∧ 𝑥𝑓) → 𝑥𝑋)
15 ssdomg 8001 . . . . . 6 (𝑋 ∈ V → (𝑥𝑋𝑥𝑋))
1610, 14, 15sylc 65 . . . . 5 (((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) ∧ 𝑥𝑓) → 𝑥𝑋)
17 filfbas 21652 . . . . . . . . 9 (𝑓 ∈ (Fil‘𝑋) → 𝑓 ∈ (fBas‘𝑋))
1811, 17syl 17 . . . . . . . 8 (𝑓 ∈ (UFil‘𝑋) → 𝑓 ∈ (fBas‘𝑋))
1918adantl 482 . . . . . . 7 ((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) → 𝑓 ∈ (fBas‘𝑋))
20 fbncp 21643 . . . . . . 7 ((𝑓 ∈ (fBas‘𝑋) ∧ 𝑥𝑓) → ¬ (𝑋𝑥) ∈ 𝑓)
2119, 20sylan 488 . . . . . 6 (((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) ∧ 𝑥𝑓) → ¬ (𝑋𝑥) ∈ 𝑓)
22 difss 3737 . . . . . . . . . . . . . 14 (𝑋𝑥) ⊆ 𝑋
23 elpw2g 4827 . . . . . . . . . . . . . 14 (𝑋 ∈ V → ((𝑋𝑥) ∈ 𝒫 𝑋 ↔ (𝑋𝑥) ⊆ 𝑋))
2422, 23mpbiri 248 . . . . . . . . . . . . 13 (𝑋 ∈ V → (𝑋𝑥) ∈ 𝒫 𝑋)
25243ad2ant1 1082 . . . . . . . . . . . 12 ((𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋) → (𝑋𝑥) ∈ 𝒫 𝑋)
26 simp2 1062 . . . . . . . . . . . . . 14 ((𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋) → 𝑥𝑋)
27 dfss4 3858 . . . . . . . . . . . . . 14 (𝑥𝑋 ↔ (𝑋 ∖ (𝑋𝑥)) = 𝑥)
2826, 27sylib 208 . . . . . . . . . . . . 13 ((𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋) → (𝑋 ∖ (𝑋𝑥)) = 𝑥)
29 simp3 1063 . . . . . . . . . . . . 13 ((𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋) → 𝑥𝑋)
3028, 29eqbrtrd 4675 . . . . . . . . . . . 12 ((𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋) → (𝑋 ∖ (𝑋𝑥)) ≺ 𝑋)
31 difeq2 3722 . . . . . . . . . . . . . 14 (𝑦 = (𝑋𝑥) → (𝑋𝑦) = (𝑋 ∖ (𝑋𝑥)))
3231breq1d 4663 . . . . . . . . . . . . 13 (𝑦 = (𝑋𝑥) → ((𝑋𝑦) ≺ 𝑋 ↔ (𝑋 ∖ (𝑋𝑥)) ≺ 𝑋))
3332elrab 3363 . . . . . . . . . . . 12 ((𝑋𝑥) ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ↔ ((𝑋𝑥) ∈ 𝒫 𝑋 ∧ (𝑋 ∖ (𝑋𝑥)) ≺ 𝑋))
3425, 30, 33sylanbrc 698 . . . . . . . . . . 11 ((𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋) → (𝑋𝑥) ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋})
35 ssel 3597 . . . . . . . . . . 11 ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓 → ((𝑋𝑥) ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} → (𝑋𝑥) ∈ 𝑓))
3634, 35syl5com 31 . . . . . . . . . 10 ((𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋) → ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓 → (𝑋𝑥) ∈ 𝑓))
37363expa 1265 . . . . . . . . 9 (((𝑋 ∈ V ∧ 𝑥𝑋) ∧ 𝑥𝑋) → ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓 → (𝑋𝑥) ∈ 𝑓))
3837impancom 456 . . . . . . . 8 (((𝑋 ∈ V ∧ 𝑥𝑋) ∧ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓) → (𝑥𝑋 → (𝑋𝑥) ∈ 𝑓))
3938con3d 148 . . . . . . 7 (((𝑋 ∈ V ∧ 𝑥𝑋) ∧ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓) → (¬ (𝑋𝑥) ∈ 𝑓 → ¬ 𝑥𝑋))
4039impancom 456 . . . . . 6 (((𝑋 ∈ V ∧ 𝑥𝑋) ∧ ¬ (𝑋𝑥) ∈ 𝑓) → ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓 → ¬ 𝑥𝑋))
4110, 14, 21, 40syl21anc 1325 . . . . 5 (((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) ∧ 𝑥𝑓) → ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓 → ¬ 𝑥𝑋))
42 bren2 7986 . . . . . 6 (𝑥𝑋 ↔ (𝑥𝑋 ∧ ¬ 𝑥𝑋))
4342simplbi2 655 . . . . 5 (𝑥𝑋 → (¬ 𝑥𝑋𝑥𝑋))
4416, 41, 43sylsyld 61 . . . 4 (((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) ∧ 𝑥𝑓) → ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓𝑥𝑋))
4544ralrimdva 2969 . . 3 ((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) → ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓 → ∀𝑥𝑓 𝑥𝑋))
4645reximdva 3017 . 2 (ω ≼ 𝑋 → (∃𝑓 ∈ (UFil‘𝑋){𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓 → ∃𝑓 ∈ (UFil‘𝑋)∀𝑥𝑓 𝑥𝑋))
478, 46mpd 15 1 (ω ≼ 𝑋 → ∃𝑓 ∈ (UFil‘𝑋)∀𝑥𝑓 𝑥𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  cdif 3571  wss 3574  𝒫 cpw 4158   class class class wbr 4653  dom cdm 5114  cfv 5888  ωcom 7065  cen 7952  cdom 7953  csdm 7954  cardccrd 8761  fBascfbas 19734  Filcfil 21649  UFilcufil 21703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-ac2 9285
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-rpss 6937  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-oi 8415  df-card 8765  df-ac 8939  df-cda 8990  df-fbas 19743  df-fg 19744  df-fil 21650  df-ufil 21705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator