HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  unop Structured version   Visualization version   GIF version

Theorem unop 28774
Description: Basic inner product property of a unitary operator. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
unop ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇𝐴) ·ih (𝑇𝐵)) = (𝐴 ·ih 𝐵))

Proof of Theorem unop
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elunop 28731 . . . 4 (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦)))
21simprbi 480 . . 3 (𝑇 ∈ UniOp → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦))
323ad2ant1 1082 . 2 ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦))
4 fveq2 6191 . . . . . 6 (𝑥 = 𝐴 → (𝑇𝑥) = (𝑇𝐴))
54oveq1d 6665 . . . . 5 (𝑥 = 𝐴 → ((𝑇𝑥) ·ih (𝑇𝑦)) = ((𝑇𝐴) ·ih (𝑇𝑦)))
6 oveq1 6657 . . . . 5 (𝑥 = 𝐴 → (𝑥 ·ih 𝑦) = (𝐴 ·ih 𝑦))
75, 6eqeq12d 2637 . . . 4 (𝑥 = 𝐴 → (((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦) ↔ ((𝑇𝐴) ·ih (𝑇𝑦)) = (𝐴 ·ih 𝑦)))
8 fveq2 6191 . . . . . 6 (𝑦 = 𝐵 → (𝑇𝑦) = (𝑇𝐵))
98oveq2d 6666 . . . . 5 (𝑦 = 𝐵 → ((𝑇𝐴) ·ih (𝑇𝑦)) = ((𝑇𝐴) ·ih (𝑇𝐵)))
10 oveq2 6658 . . . . 5 (𝑦 = 𝐵 → (𝐴 ·ih 𝑦) = (𝐴 ·ih 𝐵))
119, 10eqeq12d 2637 . . . 4 (𝑦 = 𝐵 → (((𝑇𝐴) ·ih (𝑇𝑦)) = (𝐴 ·ih 𝑦) ↔ ((𝑇𝐴) ·ih (𝑇𝐵)) = (𝐴 ·ih 𝐵)))
127, 11rspc2v 3322 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦) → ((𝑇𝐴) ·ih (𝑇𝐵)) = (𝐴 ·ih 𝐵)))
13123adant1 1079 . 2 ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦) → ((𝑇𝐴) ·ih (𝑇𝐵)) = (𝐴 ·ih 𝐵)))
143, 13mpd 15 1 ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇𝐴) ·ih (𝑇𝐵)) = (𝐴 ·ih 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1037   = wceq 1483  wcel 1990  wral 2912  ontowfo 5886  cfv 5888  (class class class)co 6650  chil 27776   ·ih csp 27779  UniOpcuo 27806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-hilex 27856
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-unop 28702
This theorem is referenced by:  unopf1o  28775  unopnorm  28776  cnvunop  28777  unopadj  28778  counop  28780
  Copyright terms: Public domain W3C validator