HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  unopf1o Structured version   Visualization version   GIF version

Theorem unopf1o 28775
Description: A unitary operator in Hilbert space is one-to-one and onto. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
unopf1o (𝑇 ∈ UniOp → 𝑇: ℋ–1-1-onto→ ℋ)

Proof of Theorem unopf1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elunop 28731 . . . . 5 (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦)))
21simplbi 476 . . . 4 (𝑇 ∈ UniOp → 𝑇: ℋ–onto→ ℋ)
3 fof 6115 . . . 4 (𝑇: ℋ–onto→ ℋ → 𝑇: ℋ⟶ ℋ)
42, 3syl 17 . . 3 (𝑇 ∈ UniOp → 𝑇: ℋ⟶ ℋ)
5 unop 28774 . . . . . . . . . . . . 13 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih (𝑇𝑥)) = (𝑥 ·ih 𝑥))
653anidm23 1385 . . . . . . . . . . . 12 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih (𝑇𝑥)) = (𝑥 ·ih 𝑥))
763adant3 1081 . . . . . . . . . . 11 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih (𝑇𝑥)) = (𝑥 ·ih 𝑥))
8 unop 28774 . . . . . . . . . . . . 13 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑦) ·ih (𝑇𝑦)) = (𝑦 ·ih 𝑦))
983anidm23 1385 . . . . . . . . . . . 12 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) → ((𝑇𝑦) ·ih (𝑇𝑦)) = (𝑦 ·ih 𝑦))
1093adant2 1080 . . . . . . . . . . 11 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑦) ·ih (𝑇𝑦)) = (𝑦 ·ih 𝑦))
117, 10oveq12d 6668 . . . . . . . . . 10 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑇𝑥) ·ih (𝑇𝑥)) + ((𝑇𝑦) ·ih (𝑇𝑦))) = ((𝑥 ·ih 𝑥) + (𝑦 ·ih 𝑦)))
12 unop 28774 . . . . . . . . . . 11 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦))
13 unop 28774 . . . . . . . . . . . 12 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇𝑦) ·ih (𝑇𝑥)) = (𝑦 ·ih 𝑥))
14133com23 1271 . . . . . . . . . . 11 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑦) ·ih (𝑇𝑥)) = (𝑦 ·ih 𝑥))
1512, 14oveq12d 6668 . . . . . . . . . 10 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑇𝑥) ·ih (𝑇𝑦)) + ((𝑇𝑦) ·ih (𝑇𝑥))) = ((𝑥 ·ih 𝑦) + (𝑦 ·ih 𝑥)))
1611, 15oveq12d 6668 . . . . . . . . 9 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((((𝑇𝑥) ·ih (𝑇𝑥)) + ((𝑇𝑦) ·ih (𝑇𝑦))) − (((𝑇𝑥) ·ih (𝑇𝑦)) + ((𝑇𝑦) ·ih (𝑇𝑥)))) = (((𝑥 ·ih 𝑥) + (𝑦 ·ih 𝑦)) − ((𝑥 ·ih 𝑦) + (𝑦 ·ih 𝑥))))
17163expb 1266 . . . . . . . 8 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((((𝑇𝑥) ·ih (𝑇𝑥)) + ((𝑇𝑦) ·ih (𝑇𝑦))) − (((𝑇𝑥) ·ih (𝑇𝑦)) + ((𝑇𝑦) ·ih (𝑇𝑥)))) = (((𝑥 ·ih 𝑥) + (𝑦 ·ih 𝑦)) − ((𝑥 ·ih 𝑦) + (𝑦 ·ih 𝑥))))
18 ffvelrn 6357 . . . . . . . . . . 11 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
19 ffvelrn 6357 . . . . . . . . . . 11 ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
2018, 19anim12dan 882 . . . . . . . . . 10 ((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ))
214, 20sylan 488 . . . . . . . . 9 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ))
22 normlem9at 27978 . . . . . . . . 9 (((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → (((𝑇𝑥) − (𝑇𝑦)) ·ih ((𝑇𝑥) − (𝑇𝑦))) = ((((𝑇𝑥) ·ih (𝑇𝑥)) + ((𝑇𝑦) ·ih (𝑇𝑦))) − (((𝑇𝑥) ·ih (𝑇𝑦)) + ((𝑇𝑦) ·ih (𝑇𝑥)))))
2321, 22syl 17 . . . . . . . 8 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑇𝑥) − (𝑇𝑦)) ·ih ((𝑇𝑥) − (𝑇𝑦))) = ((((𝑇𝑥) ·ih (𝑇𝑥)) + ((𝑇𝑦) ·ih (𝑇𝑦))) − (((𝑇𝑥) ·ih (𝑇𝑦)) + ((𝑇𝑦) ·ih (𝑇𝑥)))))
24 normlem9at 27978 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 𝑦) ·ih (𝑥 𝑦)) = (((𝑥 ·ih 𝑥) + (𝑦 ·ih 𝑦)) − ((𝑥 ·ih 𝑦) + (𝑦 ·ih 𝑥))))
2524adantl 482 . . . . . . . 8 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑥 𝑦) ·ih (𝑥 𝑦)) = (((𝑥 ·ih 𝑥) + (𝑦 ·ih 𝑦)) − ((𝑥 ·ih 𝑦) + (𝑦 ·ih 𝑥))))
2617, 23, 253eqtr4rd 2667 . . . . . . 7 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑥 𝑦) ·ih (𝑥 𝑦)) = (((𝑇𝑥) − (𝑇𝑦)) ·ih ((𝑇𝑥) − (𝑇𝑦))))
2726eqeq1d 2624 . . . . . 6 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑥 𝑦) ·ih (𝑥 𝑦)) = 0 ↔ (((𝑇𝑥) − (𝑇𝑦)) ·ih ((𝑇𝑥) − (𝑇𝑦))) = 0))
28 hvsubcl 27874 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 𝑦) ∈ ℋ)
29 his6 27956 . . . . . . . . 9 ((𝑥 𝑦) ∈ ℋ → (((𝑥 𝑦) ·ih (𝑥 𝑦)) = 0 ↔ (𝑥 𝑦) = 0))
3028, 29syl 17 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑥 𝑦) ·ih (𝑥 𝑦)) = 0 ↔ (𝑥 𝑦) = 0))
31 hvsubeq0 27925 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 𝑦) = 0𝑥 = 𝑦))
3230, 31bitrd 268 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑥 𝑦) ·ih (𝑥 𝑦)) = 0 ↔ 𝑥 = 𝑦))
3332adantl 482 . . . . . 6 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑥 𝑦) ·ih (𝑥 𝑦)) = 0 ↔ 𝑥 = 𝑦))
34 hvsubcl 27874 . . . . . . . . 9 (((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → ((𝑇𝑥) − (𝑇𝑦)) ∈ ℋ)
35 his6 27956 . . . . . . . . 9 (((𝑇𝑥) − (𝑇𝑦)) ∈ ℋ → ((((𝑇𝑥) − (𝑇𝑦)) ·ih ((𝑇𝑥) − (𝑇𝑦))) = 0 ↔ ((𝑇𝑥) − (𝑇𝑦)) = 0))
3634, 35syl 17 . . . . . . . 8 (((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → ((((𝑇𝑥) − (𝑇𝑦)) ·ih ((𝑇𝑥) − (𝑇𝑦))) = 0 ↔ ((𝑇𝑥) − (𝑇𝑦)) = 0))
37 hvsubeq0 27925 . . . . . . . 8 (((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → (((𝑇𝑥) − (𝑇𝑦)) = 0 ↔ (𝑇𝑥) = (𝑇𝑦)))
3836, 37bitrd 268 . . . . . . 7 (((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → ((((𝑇𝑥) − (𝑇𝑦)) ·ih ((𝑇𝑥) − (𝑇𝑦))) = 0 ↔ (𝑇𝑥) = (𝑇𝑦)))
3921, 38syl 17 . . . . . 6 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((((𝑇𝑥) − (𝑇𝑦)) ·ih ((𝑇𝑥) − (𝑇𝑦))) = 0 ↔ (𝑇𝑥) = (𝑇𝑦)))
4027, 33, 393bitr3rd 299 . . . . 5 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) = (𝑇𝑦) ↔ 𝑥 = 𝑦))
4140biimpd 219 . . . 4 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦))
4241ralrimivva 2971 . . 3 (𝑇 ∈ UniOp → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦))
43 dff13 6512 . . 3 (𝑇: ℋ–1-1→ ℋ ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦)))
444, 42, 43sylanbrc 698 . 2 (𝑇 ∈ UniOp → 𝑇: ℋ–1-1→ ℋ)
45 df-f1o 5895 . 2 (𝑇: ℋ–1-1-onto→ ℋ ↔ (𝑇: ℋ–1-1→ ℋ ∧ 𝑇: ℋ–onto→ ℋ))
4644, 2, 45sylanbrc 698 1 (𝑇 ∈ UniOp → 𝑇: ℋ–1-1-onto→ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wf 5884  1-1wf1 5885  ontowfo 5886  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  0cc0 9936   + caddc 9939  cmin 10266  chil 27776   ·ih csp 27779  0c0v 27781   cmv 27782  UniOpcuo 27806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-hilex 27856  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvdistr2 27866  ax-hvmul0 27867  ax-hfi 27936  ax-his1 27939  ax-his2 27940  ax-his3 27941  ax-his4 27942
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-cj 13839  df-re 13840  df-im 13841  df-hvsub 27828  df-unop 28702
This theorem is referenced by:  unopnorm  28776  cnvunop  28777  unopadj  28778  unoplin  28779  counop  28780  unopbd  28874
  Copyright terms: Public domain W3C validator