HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elunop Structured version   Visualization version   GIF version

Theorem elunop 28731
Description: Property defining a unitary Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
elunop (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦)))
Distinct variable group:   𝑥,𝑦,𝑇

Proof of Theorem elunop
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2 (𝑇 ∈ UniOp → 𝑇 ∈ V)
2 fof 6115 . . . 4 (𝑇: ℋ–onto→ ℋ → 𝑇: ℋ⟶ ℋ)
3 ax-hilex 27856 . . . 4 ℋ ∈ V
4 fex 6490 . . . 4 ((𝑇: ℋ⟶ ℋ ∧ ℋ ∈ V) → 𝑇 ∈ V)
52, 3, 4sylancl 694 . . 3 (𝑇: ℋ–onto→ ℋ → 𝑇 ∈ V)
65adantr 481 . 2 ((𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦)) → 𝑇 ∈ V)
7 foeq1 6111 . . . 4 (𝑡 = 𝑇 → (𝑡: ℋ–onto→ ℋ ↔ 𝑇: ℋ–onto→ ℋ))
8 fveq1 6190 . . . . . . 7 (𝑡 = 𝑇 → (𝑡𝑥) = (𝑇𝑥))
9 fveq1 6190 . . . . . . 7 (𝑡 = 𝑇 → (𝑡𝑦) = (𝑇𝑦))
108, 9oveq12d 6668 . . . . . 6 (𝑡 = 𝑇 → ((𝑡𝑥) ·ih (𝑡𝑦)) = ((𝑇𝑥) ·ih (𝑇𝑦)))
1110eqeq1d 2624 . . . . 5 (𝑡 = 𝑇 → (((𝑡𝑥) ·ih (𝑡𝑦)) = (𝑥 ·ih 𝑦) ↔ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦)))
12112ralbidv 2989 . . . 4 (𝑡 = 𝑇 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡𝑥) ·ih (𝑡𝑦)) = (𝑥 ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦)))
137, 12anbi12d 747 . . 3 (𝑡 = 𝑇 → ((𝑡: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡𝑥) ·ih (𝑡𝑦)) = (𝑥 ·ih 𝑦)) ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦))))
14 df-unop 28702 . . 3 UniOp = {𝑡 ∣ (𝑡: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡𝑥) ·ih (𝑡𝑦)) = (𝑥 ·ih 𝑦))}
1513, 14elab2g 3353 . 2 (𝑇 ∈ V → (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦))))
161, 6, 15pm5.21nii 368 1 (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  wf 5884  ontowfo 5886  cfv 5888  (class class class)co 6650  chil 27776   ·ih csp 27779  UniOpcuo 27806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-hilex 27856
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-unop 28702
This theorem is referenced by:  unop  28774  unopf1o  28775  cnvunop  28777  counop  28780  idunop  28837  lnopunii  28871  elunop2  28872
  Copyright terms: Public domain W3C validator