MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustuqtoplem Structured version   Visualization version   GIF version

Theorem ustuqtoplem 22043
Description: Lemma for ustuqtop 22050. (Contributed by Thierry Arnoux, 11-Jan-2018.)
Hypothesis
Ref Expression
utopustuq.1 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
Assertion
Ref Expression
ustuqtoplem (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) ∧ 𝐴𝑉) → (𝐴 ∈ (𝑁𝑃) ↔ ∃𝑤𝑈 𝐴 = (𝑤 “ {𝑃})))
Distinct variable groups:   𝑤,𝐴   𝑤,𝑣,𝑃   𝑣,𝑝,𝑤,𝑈   𝑋,𝑝,𝑣
Allowed substitution hints:   𝐴(𝑣,𝑝)   𝑃(𝑝)   𝑁(𝑤,𝑣,𝑝)   𝑉(𝑤,𝑣,𝑝)   𝑋(𝑤)

Proof of Theorem ustuqtoplem
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 utopustuq.1 . . . . . 6 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
2 simpl 473 . . . . . . . . . . 11 ((𝑝 = 𝑞𝑣𝑈) → 𝑝 = 𝑞)
32sneqd 4189 . . . . . . . . . 10 ((𝑝 = 𝑞𝑣𝑈) → {𝑝} = {𝑞})
43imaeq2d 5466 . . . . . . . . 9 ((𝑝 = 𝑞𝑣𝑈) → (𝑣 “ {𝑝}) = (𝑣 “ {𝑞}))
54mpteq2dva 4744 . . . . . . . 8 (𝑝 = 𝑞 → (𝑣𝑈 ↦ (𝑣 “ {𝑝})) = (𝑣𝑈 ↦ (𝑣 “ {𝑞})))
65rneqd 5353 . . . . . . 7 (𝑝 = 𝑞 → ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))
76cbvmptv 4750 . . . . . 6 (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝}))) = (𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))
81, 7eqtri 2644 . . . . 5 𝑁 = (𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))
98a1i 11 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) → 𝑁 = (𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞}))))
10 simpr2 1068 . . . . . . . . 9 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑃𝑋𝑞 = 𝑃𝑣𝑈)) → 𝑞 = 𝑃)
1110sneqd 4189 . . . . . . . 8 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑃𝑋𝑞 = 𝑃𝑣𝑈)) → {𝑞} = {𝑃})
1211imaeq2d 5466 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑃𝑋𝑞 = 𝑃𝑣𝑈)) → (𝑣 “ {𝑞}) = (𝑣 “ {𝑃}))
13123anassrs 1290 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) ∧ 𝑞 = 𝑃) ∧ 𝑣𝑈) → (𝑣 “ {𝑞}) = (𝑣 “ {𝑃}))
1413mpteq2dva 4744 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) ∧ 𝑞 = 𝑃) → (𝑣𝑈 ↦ (𝑣 “ {𝑞})) = (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
1514rneqd 5353 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) ∧ 𝑞 = 𝑃) → ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
16 simpr 477 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) → 𝑃𝑋)
17 mptexg 6484 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ∈ V)
18 rnexg 7098 . . . . . 6 ((𝑣𝑈 ↦ (𝑣 “ {𝑃})) ∈ V → ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ∈ V)
1917, 18syl 17 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ∈ V)
2019adantr 481 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) → ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ∈ V)
219, 15, 16, 20fvmptd 6288 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) → (𝑁𝑃) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
2221eleq2d 2687 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) → (𝐴 ∈ (𝑁𝑃) ↔ 𝐴 ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃}))))
23 imaeq1 5461 . . . 4 (𝑣 = 𝑤 → (𝑣 “ {𝑃}) = (𝑤 “ {𝑃}))
2423cbvmptv 4750 . . 3 (𝑣𝑈 ↦ (𝑣 “ {𝑃})) = (𝑤𝑈 ↦ (𝑤 “ {𝑃}))
2524elrnmpt 5372 . 2 (𝐴𝑉 → (𝐴 ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ↔ ∃𝑤𝑈 𝐴 = (𝑤 “ {𝑃})))
2622, 25sylan9bb 736 1 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) ∧ 𝐴𝑉) → (𝐴 ∈ (𝑁𝑃) ↔ ∃𝑤𝑈 𝐴 = (𝑤 “ {𝑃})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  Vcvv 3200  {csn 4177  cmpt 4729  ran crn 5115  cima 5117  cfv 5888  UnifOncust 22003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by:  ustuqtop1  22045  ustuqtop2  22046  ustuqtop3  22047  ustuqtop4  22048  ustuqtop5  22049  utopsnneiplem  22051
  Copyright terms: Public domain W3C validator