| Step | Hyp | Ref
| Expression |
| 1 | | utopustuq.1 |
. . . . . 6
⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
| 2 | | simpl 473 |
. . . . . . . . . . 11
⊢ ((𝑝 = 𝑞 ∧ 𝑣 ∈ 𝑈) → 𝑝 = 𝑞) |
| 3 | 2 | sneqd 4189 |
. . . . . . . . . 10
⊢ ((𝑝 = 𝑞 ∧ 𝑣 ∈ 𝑈) → {𝑝} = {𝑞}) |
| 4 | 3 | imaeq2d 5466 |
. . . . . . . . 9
⊢ ((𝑝 = 𝑞 ∧ 𝑣 ∈ 𝑈) → (𝑣 “ {𝑝}) = (𝑣 “ {𝑞})) |
| 5 | 4 | mpteq2dva 4744 |
. . . . . . . 8
⊢ (𝑝 = 𝑞 → (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) = (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞}))) |
| 6 | 5 | rneqd 5353 |
. . . . . . 7
⊢ (𝑝 = 𝑞 → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞}))) |
| 7 | 6 | cbvmptv 4750 |
. . . . . 6
⊢ (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) = (𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞}))) |
| 8 | 1, 7 | eqtri 2644 |
. . . . 5
⊢ 𝑁 = (𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞}))) |
| 9 | 8 | a1i 11 |
. . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → 𝑁 = (𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))) |
| 10 | | simpr2 1068 |
. . . . . . . . 9
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑃 ∈ 𝑋 ∧ 𝑞 = 𝑃 ∧ 𝑣 ∈ 𝑈)) → 𝑞 = 𝑃) |
| 11 | 10 | sneqd 4189 |
. . . . . . . 8
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑃 ∈ 𝑋 ∧ 𝑞 = 𝑃 ∧ 𝑣 ∈ 𝑈)) → {𝑞} = {𝑃}) |
| 12 | 11 | imaeq2d 5466 |
. . . . . . 7
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑃 ∈ 𝑋 ∧ 𝑞 = 𝑃 ∧ 𝑣 ∈ 𝑈)) → (𝑣 “ {𝑞}) = (𝑣 “ {𝑃})) |
| 13 | 12 | 3anassrs 1290 |
. . . . . 6
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑞 = 𝑃) ∧ 𝑣 ∈ 𝑈) → (𝑣 “ {𝑞}) = (𝑣 “ {𝑃})) |
| 14 | 13 | mpteq2dva 4744 |
. . . . 5
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑞 = 𝑃) → (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})) = (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃}))) |
| 15 | 14 | rneqd 5353 |
. . . 4
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑞 = 𝑃) → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃}))) |
| 16 | | simpr 477 |
. . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → 𝑃 ∈ 𝑋) |
| 17 | | mptexg 6484 |
. . . . . 6
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ∈ V) |
| 18 | | rnexg 7098 |
. . . . . 6
⊢ ((𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ∈ V → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ∈ V) |
| 19 | 17, 18 | syl 17 |
. . . . 5
⊢ (𝑈 ∈ (UnifOn‘𝑋) → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ∈ V) |
| 20 | 19 | adantr 481 |
. . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ∈ V) |
| 21 | 9, 15, 16, 20 | fvmptd 6288 |
. . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑁‘𝑃) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃}))) |
| 22 | 21 | eleq2d 2687 |
. 2
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝐴 ∈ (𝑁‘𝑃) ↔ 𝐴 ∈ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})))) |
| 23 | | imaeq1 5461 |
. . . 4
⊢ (𝑣 = 𝑤 → (𝑣 “ {𝑃}) = (𝑤 “ {𝑃})) |
| 24 | 23 | cbvmptv 4750 |
. . 3
⊢ (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) = (𝑤 ∈ 𝑈 ↦ (𝑤 “ {𝑃})) |
| 25 | 24 | elrnmpt 5372 |
. 2
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ↔ ∃𝑤 ∈ 𝑈 𝐴 = (𝑤 “ {𝑃}))) |
| 26 | 22, 25 | sylan9bb 736 |
1
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝐴 ∈ 𝑉) → (𝐴 ∈ (𝑁‘𝑃) ↔ ∃𝑤 ∈ 𝑈 𝐴 = (𝑤 “ {𝑃}))) |