![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anassrs | Structured version Visualization version GIF version |
Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
3anassrs.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
3anassrs | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anassrs.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | |
2 | 1 | 3exp2 1285 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
3 | 2 | imp41 619 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
This theorem is referenced by: ralrimivvva 2972 euotd 4975 dfgrp3e 17515 kerf1hrm 18743 psgndif 19948 neiptopnei 20936 neitr 20984 neitx 21410 cnextcn 21871 utoptop 22038 ustuqtoplem 22043 ustuqtop1 22045 utopsnneiplem 22051 utop3cls 22055 trcfilu 22098 neipcfilu 22100 xmetpsmet 22153 metustsym 22360 grporcan 27372 disjdsct 29480 xrofsup 29533 omndmul2 29712 archirngz 29743 archiabllem1 29747 archiabllem2c 29749 reofld 29840 pstmfval 29939 tpr2rico 29958 esumpcvgval 30140 esumcvg 30148 esum2d 30155 voliune 30292 signsply0 30628 signstfvneq0 30649 |
Copyright terms: Public domain | W3C validator |