| Step | Hyp | Ref
| Expression |
| 1 | | fnresi 6008 |
. . . . . . 7
⊢ ( I
↾ 𝑋) Fn 𝑋 |
| 2 | | fnsnfv 6258 |
. . . . . . 7
⊢ ((( I
↾ 𝑋) Fn 𝑋 ∧ 𝑝 ∈ 𝑋) → {(( I ↾ 𝑋)‘𝑝)} = (( I ↾ 𝑋) “ {𝑝})) |
| 3 | 1, 2 | mpan 706 |
. . . . . 6
⊢ (𝑝 ∈ 𝑋 → {(( I ↾ 𝑋)‘𝑝)} = (( I ↾ 𝑋) “ {𝑝})) |
| 4 | 3 | ad4antlr 769 |
. . . . 5
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → {(( I ↾ 𝑋)‘𝑝)} = (( I ↾ 𝑋) “ {𝑝})) |
| 5 | | simp-4l 806 |
. . . . . . 7
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑈 ∈ (UnifOn‘𝑋)) |
| 6 | | simplr 792 |
. . . . . . 7
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑤 ∈ 𝑈) |
| 7 | | ustdiag 22012 |
. . . . . . 7
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤 ∈ 𝑈) → ( I ↾ 𝑋) ⊆ 𝑤) |
| 8 | 5, 6, 7 | syl2anc 693 |
. . . . . 6
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → ( I ↾ 𝑋) ⊆ 𝑤) |
| 9 | | imass1 5500 |
. . . . . 6
⊢ (( I
↾ 𝑋) ⊆ 𝑤 → (( I ↾ 𝑋) “ {𝑝}) ⊆ (𝑤 “ {𝑝})) |
| 10 | 8, 9 | syl 17 |
. . . . 5
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → (( I ↾ 𝑋) “ {𝑝}) ⊆ (𝑤 “ {𝑝})) |
| 11 | 4, 10 | eqsstrd 3639 |
. . . 4
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → {(( I ↾ 𝑋)‘𝑝)} ⊆ (𝑤 “ {𝑝})) |
| 12 | | fvex 6201 |
. . . . 5
⊢ (( I
↾ 𝑋)‘𝑝) ∈ V |
| 13 | 12 | snss 4316 |
. . . 4
⊢ ((( I
↾ 𝑋)‘𝑝) ∈ (𝑤 “ {𝑝}) ↔ {(( I ↾ 𝑋)‘𝑝)} ⊆ (𝑤 “ {𝑝})) |
| 14 | 11, 13 | sylibr 224 |
. . 3
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → (( I ↾ 𝑋)‘𝑝) ∈ (𝑤 “ {𝑝})) |
| 15 | | fvresi 6439 |
. . . . 5
⊢ (𝑝 ∈ 𝑋 → (( I ↾ 𝑋)‘𝑝) = 𝑝) |
| 16 | 15 | eqcomd 2628 |
. . . 4
⊢ (𝑝 ∈ 𝑋 → 𝑝 = (( I ↾ 𝑋)‘𝑝)) |
| 17 | 16 | ad4antlr 769 |
. . 3
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑝 = (( I ↾ 𝑋)‘𝑝)) |
| 18 | | simpr 477 |
. . 3
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑎 = (𝑤 “ {𝑝})) |
| 19 | 14, 17, 18 | 3eltr4d 2716 |
. 2
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑝 ∈ 𝑎) |
| 20 | | vex 3203 |
. . . 4
⊢ 𝑎 ∈ V |
| 21 | | utopustuq.1 |
. . . . 5
⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
| 22 | 21 | ustuqtoplem 22043 |
. . . 4
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ V) → (𝑎 ∈ (𝑁‘𝑝) ↔ ∃𝑤 ∈ 𝑈 𝑎 = (𝑤 “ {𝑝}))) |
| 23 | 20, 22 | mpan2 707 |
. . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (𝑎 ∈ (𝑁‘𝑝) ↔ ∃𝑤 ∈ 𝑈 𝑎 = (𝑤 “ {𝑝}))) |
| 24 | 23 | biimpa 501 |
. 2
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∃𝑤 ∈ 𝑈 𝑎 = (𝑤 “ {𝑝})) |
| 25 | 19, 24 | r19.29a 3078 |
1
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑝 ∈ 𝑎) |