MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvtxael Structured version   Visualization version   GIF version

Theorem uvtxael 26288
Description: A universal vertex, i.e. an element of the set of all universal vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 29-Oct-2020.)
Hypothesis
Ref Expression
uvtxael.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
uvtxael (𝐺𝑊 → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁))))
Distinct variable groups:   𝑛,𝐺   𝑛,𝑁   𝑛,𝑉
Allowed substitution hint:   𝑊(𝑛)

Proof of Theorem uvtxael
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 uvtxael.v . . . 4 𝑉 = (Vtx‘𝐺)
21uvtxaval 26287 . . 3 (𝐺𝑊 → (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)})
32eleq2d 2687 . 2 (𝐺𝑊 → (𝑁 ∈ (UnivVtx‘𝐺) ↔ 𝑁 ∈ {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)}))
4 sneq 4187 . . . . 5 (𝑣 = 𝑁 → {𝑣} = {𝑁})
54difeq2d 3728 . . . 4 (𝑣 = 𝑁 → (𝑉 ∖ {𝑣}) = (𝑉 ∖ {𝑁}))
6 oveq2 6658 . . . . 5 (𝑣 = 𝑁 → (𝐺 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝑁))
76eleq2d 2687 . . . 4 (𝑣 = 𝑁 → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝑁)))
85, 7raleqbidv 3152 . . 3 (𝑣 = 𝑁 → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁)))
98elrab 3363 . 2 (𝑁 ∈ {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} ↔ (𝑁𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁)))
103, 9syl6bb 276 1 (𝐺𝑊 → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  {crab 2916  cdif 3571  {csn 4177  cfv 5888  (class class class)co 6650  Vtxcvtx 25874   NeighbVtx cnbgr 26224  UnivVtxcuvtxa 26225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-uvtxa 26230
This theorem is referenced by:  vtxnbuvtx  26291  uvtx2vtx1edg  26299  uvtx2vtx1edgb  26300  uvtxnbgrb  26302  iscplgrnb  26312  cplgr1v  26326  cusgrexi  26339  structtocusgr  26342
  Copyright terms: Public domain W3C validator