MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvtxael Structured version   Visualization version   Unicode version

Theorem uvtxael 26288
Description: A universal vertex, i.e. an element of the set of all universal vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 29-Oct-2020.)
Hypothesis
Ref Expression
uvtxael.v  |-  V  =  (Vtx `  G )
Assertion
Ref Expression
uvtxael  |-  ( G  e.  W  ->  ( N  e.  (UnivVtx `  G
)  <->  ( N  e.  V  /\  A. n  e.  ( V  \  { N } ) n  e.  ( G NeighbVtx  N )
) ) )
Distinct variable groups:    n, G    n, N    n, V
Allowed substitution hint:    W( n)

Proof of Theorem uvtxael
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 uvtxael.v . . . 4  |-  V  =  (Vtx `  G )
21uvtxaval 26287 . . 3  |-  ( G  e.  W  ->  (UnivVtx `  G )  =  {
v  e.  V  |  A. n  e.  ( V  \  { v } ) n  e.  ( G NeighbVtx  v ) } )
32eleq2d 2687 . 2  |-  ( G  e.  W  ->  ( N  e.  (UnivVtx `  G
)  <->  N  e.  { v  e.  V  |  A. n  e.  ( V  \  { v } ) n  e.  ( G NeighbVtx  v ) } ) )
4 sneq 4187 . . . . 5  |-  ( v  =  N  ->  { v }  =  { N } )
54difeq2d 3728 . . . 4  |-  ( v  =  N  ->  ( V  \  { v } )  =  ( V 
\  { N }
) )
6 oveq2 6658 . . . . 5  |-  ( v  =  N  ->  ( G NeighbVtx  v )  =  ( G NeighbVtx  N ) )
76eleq2d 2687 . . . 4  |-  ( v  =  N  ->  (
n  e.  ( G NeighbVtx  v )  <->  n  e.  ( G NeighbVtx  N ) ) )
85, 7raleqbidv 3152 . . 3  |-  ( v  =  N  ->  ( A. n  e.  ( V  \  { v } ) n  e.  ( G NeighbVtx  v )  <->  A. n  e.  ( V  \  { N } ) n  e.  ( G NeighbVtx  N )
) )
98elrab 3363 . 2  |-  ( N  e.  { v  e.  V  |  A. n  e.  ( V  \  {
v } ) n  e.  ( G NeighbVtx  v ) }  <->  ( N  e.  V  /\  A. n  e.  ( V  \  { N } ) n  e.  ( G NeighbVtx  N )
) )
103, 9syl6bb 276 1  |-  ( G  e.  W  ->  ( N  e.  (UnivVtx `  G
)  <->  ( N  e.  V  /\  A. n  e.  ( V  \  { N } ) n  e.  ( G NeighbVtx  N )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    \ cdif 3571   {csn 4177   ` cfv 5888  (class class class)co 6650  Vtxcvtx 25874   NeighbVtx cnbgr 26224  UnivVtxcuvtxa 26225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-uvtxa 26230
This theorem is referenced by:  vtxnbuvtx  26291  uvtx2vtx1edg  26299  uvtx2vtx1edgb  26300  uvtxnbgrb  26302  iscplgrnb  26312  cplgr1v  26326  cusgrexi  26339  structtocusgr  26342
  Copyright terms: Public domain W3C validator