| Step | Hyp | Ref
| Expression |
| 1 | | wdom2d.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| 2 | | rabexg 4812 |
. . . . . 6
⊢ (𝐵 ∈ 𝑊 → {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ∈ V) |
| 3 | 1, 2 | syl 17 |
. . . . 5
⊢ (𝜑 → {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ∈ V) |
| 4 | | wdom2d.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 5 | | xpexg 6960 |
. . . . 5
⊢ (({𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ∈ V ∧ 𝐴 ∈ 𝑉) → ({𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} × 𝐴) ∈ V) |
| 6 | 3, 4, 5 | syl2anc 693 |
. . . 4
⊢ (𝜑 → ({𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} × 𝐴) ∈ V) |
| 7 | | csbeq1 3536 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑤 → ⦋𝑧 / 𝑦⦌𝑋 = ⦋𝑤 / 𝑦⦌𝑋) |
| 8 | 7 | eleq1d 2686 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → (⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴 ↔ ⦋𝑤 / 𝑦⦌𝑋 ∈ 𝐴)) |
| 9 | 8 | elrab 3363 |
. . . . . . . 8
⊢ (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↔ (𝑤 ∈ 𝐵 ∧ ⦋𝑤 / 𝑦⦌𝑋 ∈ 𝐴)) |
| 10 | 9 | simprbi 480 |
. . . . . . 7
⊢ (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} → ⦋𝑤 / 𝑦⦌𝑋 ∈ 𝐴) |
| 11 | 10 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}) → ⦋𝑤 / 𝑦⦌𝑋 ∈ 𝐴) |
| 12 | | eqid 2622 |
. . . . . 6
⊢ (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋) = (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋) |
| 13 | 11, 12 | fmptd 6385 |
. . . . 5
⊢ (𝜑 → (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋):{𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}⟶𝐴) |
| 14 | | fssxp 6060 |
. . . . 5
⊢ ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋):{𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}⟶𝐴 → (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋) ⊆ ({𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} × 𝐴)) |
| 15 | 13, 14 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋) ⊆ ({𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} × 𝐴)) |
| 16 | 6, 15 | ssexd 4805 |
. . 3
⊢ (𝜑 → (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋) ∈ V) |
| 17 | | wdom2d.o |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 = 𝑋) |
| 18 | | eleq1 2689 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴)) |
| 19 | 18 | biimpcd 239 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → (𝑥 = 𝑋 → 𝑋 ∈ 𝐴)) |
| 20 | 19 | ancrd 577 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 → (𝑥 = 𝑋 → (𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋))) |
| 21 | 20 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 = 𝑋 → (𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋))) |
| 22 | 21 | reximdv 3016 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∃𝑦 ∈ 𝐵 𝑥 = 𝑋 → ∃𝑦 ∈ 𝐵 (𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋))) |
| 23 | 17, 22 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 (𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋)) |
| 24 | | nfv 1843 |
. . . . . . . 8
⊢
Ⅎ𝑣(𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋) |
| 25 | | nfcsb1v 3549 |
. . . . . . . . . 10
⊢
Ⅎ𝑦⦋𝑣 / 𝑦⦌𝑋 |
| 26 | 25 | nfel1 2779 |
. . . . . . . . 9
⊢
Ⅎ𝑦⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴 |
| 27 | 25 | nfeq2 2780 |
. . . . . . . . 9
⊢
Ⅎ𝑦 𝑥 = ⦋𝑣 / 𝑦⦌𝑋 |
| 28 | 26, 27 | nfan 1828 |
. . . . . . . 8
⊢
Ⅎ𝑦(⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴 ∧ 𝑥 = ⦋𝑣 / 𝑦⦌𝑋) |
| 29 | | csbeq1a 3542 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑣 → 𝑋 = ⦋𝑣 / 𝑦⦌𝑋) |
| 30 | 29 | eleq1d 2686 |
. . . . . . . . 9
⊢ (𝑦 = 𝑣 → (𝑋 ∈ 𝐴 ↔ ⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴)) |
| 31 | 29 | eqeq2d 2632 |
. . . . . . . . 9
⊢ (𝑦 = 𝑣 → (𝑥 = 𝑋 ↔ 𝑥 = ⦋𝑣 / 𝑦⦌𝑋)) |
| 32 | 30, 31 | anbi12d 747 |
. . . . . . . 8
⊢ (𝑦 = 𝑣 → ((𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋) ↔ (⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴 ∧ 𝑥 = ⦋𝑣 / 𝑦⦌𝑋))) |
| 33 | 24, 28, 32 | cbvrex 3168 |
. . . . . . 7
⊢
(∃𝑦 ∈
𝐵 (𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋) ↔ ∃𝑣 ∈ 𝐵 (⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴 ∧ 𝑥 = ⦋𝑣 / 𝑦⦌𝑋)) |
| 34 | 23, 33 | sylib 208 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑣 ∈ 𝐵 (⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴 ∧ 𝑥 = ⦋𝑣 / 𝑦⦌𝑋)) |
| 35 | | csbeq1 3536 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑣 → ⦋𝑧 / 𝑦⦌𝑋 = ⦋𝑣 / 𝑦⦌𝑋) |
| 36 | 35 | eleq1d 2686 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑣 → (⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴 ↔ ⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴)) |
| 37 | 36 | elrab 3363 |
. . . . . . . . . . 11
⊢ (𝑣 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↔ (𝑣 ∈ 𝐵 ∧ ⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴)) |
| 38 | 37 | simprbi 480 |
. . . . . . . . . 10
⊢ (𝑣 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} → ⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴) |
| 39 | | csbeq1 3536 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑣 → ⦋𝑤 / 𝑦⦌𝑋 = ⦋𝑣 / 𝑦⦌𝑋) |
| 40 | 39, 12 | fvmptg 6280 |
. . . . . . . . . 10
⊢ ((𝑣 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ∧ ⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴) → ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋)‘𝑣) = ⦋𝑣 / 𝑦⦌𝑋) |
| 41 | 38, 40 | mpdan 702 |
. . . . . . . . 9
⊢ (𝑣 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} → ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋)‘𝑣) = ⦋𝑣 / 𝑦⦌𝑋) |
| 42 | 41 | eqeq2d 2632 |
. . . . . . . 8
⊢ (𝑣 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} → (𝑥 = ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋)‘𝑣) ↔ 𝑥 = ⦋𝑣 / 𝑦⦌𝑋)) |
| 43 | 42 | rexbiia 3040 |
. . . . . . 7
⊢
(∃𝑣 ∈
{𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}𝑥 = ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋)‘𝑣) ↔ ∃𝑣 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}𝑥 = ⦋𝑣 / 𝑦⦌𝑋) |
| 44 | 36 | rexrab 3370 |
. . . . . . 7
⊢
(∃𝑣 ∈
{𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}𝑥 = ⦋𝑣 / 𝑦⦌𝑋 ↔ ∃𝑣 ∈ 𝐵 (⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴 ∧ 𝑥 = ⦋𝑣 / 𝑦⦌𝑋)) |
| 45 | 43, 44 | bitri 264 |
. . . . . 6
⊢
(∃𝑣 ∈
{𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}𝑥 = ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋)‘𝑣) ↔ ∃𝑣 ∈ 𝐵 (⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴 ∧ 𝑥 = ⦋𝑣 / 𝑦⦌𝑋)) |
| 46 | 34, 45 | sylibr 224 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑣 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}𝑥 = ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋)‘𝑣)) |
| 47 | 46 | ralrimiva 2966 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}𝑥 = ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋)‘𝑣)) |
| 48 | | dffo3 6374 |
. . . 4
⊢ ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋):{𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}–onto→𝐴 ↔ ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋):{𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}𝑥 = ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋)‘𝑣))) |
| 49 | 13, 47, 48 | sylanbrc 698 |
. . 3
⊢ (𝜑 → (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋):{𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}–onto→𝐴) |
| 50 | | fowdom 8476 |
. . 3
⊢ (((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋) ∈ V ∧ (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋):{𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}–onto→𝐴) → 𝐴 ≼* {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}) |
| 51 | 16, 49, 50 | syl2anc 693 |
. 2
⊢ (𝜑 → 𝐴 ≼* {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}) |
| 52 | | ssrab2 3687 |
. . . 4
⊢ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ⊆ 𝐵 |
| 53 | | ssdomg 8001 |
. . . 4
⊢ (𝐵 ∈ 𝑊 → ({𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ⊆ 𝐵 → {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ≼ 𝐵)) |
| 54 | 52, 53 | mpi 20 |
. . 3
⊢ (𝐵 ∈ 𝑊 → {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ≼ 𝐵) |
| 55 | | domwdom 8479 |
. . 3
⊢ ({𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ≼ 𝐵 → {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ≼* 𝐵) |
| 56 | 1, 54, 55 | 3syl 18 |
. 2
⊢ (𝜑 → {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ≼* 𝐵) |
| 57 | | wdomtr 8480 |
. 2
⊢ ((𝐴 ≼* {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ∧ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ≼* 𝐵) → 𝐴 ≼* 𝐵) |
| 58 | 51, 56, 57 | syl2anc 693 |
1
⊢ (𝜑 → 𝐴 ≼* 𝐵) |