MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdom2d Structured version   Visualization version   GIF version

Theorem wdom2d 8485
Description: Deduce weak dominance from an implicit onto function (stated in a way which avoids ax-rep 4771). (Contributed by Stefan O'Rear, 13-Feb-2015.)
Hypotheses
Ref Expression
wdom2d.a (𝜑𝐴𝑉)
wdom2d.b (𝜑𝐵𝑊)
wdom2d.o ((𝜑𝑥𝐴) → ∃𝑦𝐵 𝑥 = 𝑋)
Assertion
Ref Expression
wdom2d (𝜑𝐴* 𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑋   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑦)

Proof of Theorem wdom2d
Dummy variables 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wdom2d.b . . . . . 6 (𝜑𝐵𝑊)
2 rabexg 4812 . . . . . 6 (𝐵𝑊 → {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ∈ V)
31, 2syl 17 . . . . 5 (𝜑 → {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ∈ V)
4 wdom2d.a . . . . 5 (𝜑𝐴𝑉)
5 xpexg 6960 . . . . 5 (({𝑧𝐵𝑧 / 𝑦𝑋𝐴} ∈ V ∧ 𝐴𝑉) → ({𝑧𝐵𝑧 / 𝑦𝑋𝐴} × 𝐴) ∈ V)
63, 4, 5syl2anc 693 . . . 4 (𝜑 → ({𝑧𝐵𝑧 / 𝑦𝑋𝐴} × 𝐴) ∈ V)
7 csbeq1 3536 . . . . . . . . . 10 (𝑧 = 𝑤𝑧 / 𝑦𝑋 = 𝑤 / 𝑦𝑋)
87eleq1d 2686 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧 / 𝑦𝑋𝐴𝑤 / 𝑦𝑋𝐴))
98elrab 3363 . . . . . . . 8 (𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↔ (𝑤𝐵𝑤 / 𝑦𝑋𝐴))
109simprbi 480 . . . . . . 7 (𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} → 𝑤 / 𝑦𝑋𝐴)
1110adantl 482 . . . . . 6 ((𝜑𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴}) → 𝑤 / 𝑦𝑋𝐴)
12 eqid 2622 . . . . . 6 (𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋) = (𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋)
1311, 12fmptd 6385 . . . . 5 (𝜑 → (𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋):{𝑧𝐵𝑧 / 𝑦𝑋𝐴}⟶𝐴)
14 fssxp 6060 . . . . 5 ((𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋):{𝑧𝐵𝑧 / 𝑦𝑋𝐴}⟶𝐴 → (𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋) ⊆ ({𝑧𝐵𝑧 / 𝑦𝑋𝐴} × 𝐴))
1513, 14syl 17 . . . 4 (𝜑 → (𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋) ⊆ ({𝑧𝐵𝑧 / 𝑦𝑋𝐴} × 𝐴))
166, 15ssexd 4805 . . 3 (𝜑 → (𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋) ∈ V)
17 wdom2d.o . . . . . . . 8 ((𝜑𝑥𝐴) → ∃𝑦𝐵 𝑥 = 𝑋)
18 eleq1 2689 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑥𝐴𝑋𝐴))
1918biimpcd 239 . . . . . . . . . . 11 (𝑥𝐴 → (𝑥 = 𝑋𝑋𝐴))
2019ancrd 577 . . . . . . . . . 10 (𝑥𝐴 → (𝑥 = 𝑋 → (𝑋𝐴𝑥 = 𝑋)))
2120adantl 482 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑥 = 𝑋 → (𝑋𝐴𝑥 = 𝑋)))
2221reximdv 3016 . . . . . . . 8 ((𝜑𝑥𝐴) → (∃𝑦𝐵 𝑥 = 𝑋 → ∃𝑦𝐵 (𝑋𝐴𝑥 = 𝑋)))
2317, 22mpd 15 . . . . . . 7 ((𝜑𝑥𝐴) → ∃𝑦𝐵 (𝑋𝐴𝑥 = 𝑋))
24 nfv 1843 . . . . . . . 8 𝑣(𝑋𝐴𝑥 = 𝑋)
25 nfcsb1v 3549 . . . . . . . . . 10 𝑦𝑣 / 𝑦𝑋
2625nfel1 2779 . . . . . . . . 9 𝑦𝑣 / 𝑦𝑋𝐴
2725nfeq2 2780 . . . . . . . . 9 𝑦 𝑥 = 𝑣 / 𝑦𝑋
2826, 27nfan 1828 . . . . . . . 8 𝑦(𝑣 / 𝑦𝑋𝐴𝑥 = 𝑣 / 𝑦𝑋)
29 csbeq1a 3542 . . . . . . . . . 10 (𝑦 = 𝑣𝑋 = 𝑣 / 𝑦𝑋)
3029eleq1d 2686 . . . . . . . . 9 (𝑦 = 𝑣 → (𝑋𝐴𝑣 / 𝑦𝑋𝐴))
3129eqeq2d 2632 . . . . . . . . 9 (𝑦 = 𝑣 → (𝑥 = 𝑋𝑥 = 𝑣 / 𝑦𝑋))
3230, 31anbi12d 747 . . . . . . . 8 (𝑦 = 𝑣 → ((𝑋𝐴𝑥 = 𝑋) ↔ (𝑣 / 𝑦𝑋𝐴𝑥 = 𝑣 / 𝑦𝑋)))
3324, 28, 32cbvrex 3168 . . . . . . 7 (∃𝑦𝐵 (𝑋𝐴𝑥 = 𝑋) ↔ ∃𝑣𝐵 (𝑣 / 𝑦𝑋𝐴𝑥 = 𝑣 / 𝑦𝑋))
3423, 33sylib 208 . . . . . 6 ((𝜑𝑥𝐴) → ∃𝑣𝐵 (𝑣 / 𝑦𝑋𝐴𝑥 = 𝑣 / 𝑦𝑋))
35 csbeq1 3536 . . . . . . . . . . . . 13 (𝑧 = 𝑣𝑧 / 𝑦𝑋 = 𝑣 / 𝑦𝑋)
3635eleq1d 2686 . . . . . . . . . . . 12 (𝑧 = 𝑣 → (𝑧 / 𝑦𝑋𝐴𝑣 / 𝑦𝑋𝐴))
3736elrab 3363 . . . . . . . . . . 11 (𝑣 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↔ (𝑣𝐵𝑣 / 𝑦𝑋𝐴))
3837simprbi 480 . . . . . . . . . 10 (𝑣 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} → 𝑣 / 𝑦𝑋𝐴)
39 csbeq1 3536 . . . . . . . . . . 11 (𝑤 = 𝑣𝑤 / 𝑦𝑋 = 𝑣 / 𝑦𝑋)
4039, 12fvmptg 6280 . . . . . . . . . 10 ((𝑣 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ∧ 𝑣 / 𝑦𝑋𝐴) → ((𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋)‘𝑣) = 𝑣 / 𝑦𝑋)
4138, 40mpdan 702 . . . . . . . . 9 (𝑣 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} → ((𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋)‘𝑣) = 𝑣 / 𝑦𝑋)
4241eqeq2d 2632 . . . . . . . 8 (𝑣 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} → (𝑥 = ((𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋)‘𝑣) ↔ 𝑥 = 𝑣 / 𝑦𝑋))
4342rexbiia 3040 . . . . . . 7 (∃𝑣 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴}𝑥 = ((𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋)‘𝑣) ↔ ∃𝑣 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴}𝑥 = 𝑣 / 𝑦𝑋)
4436rexrab 3370 . . . . . . 7 (∃𝑣 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴}𝑥 = 𝑣 / 𝑦𝑋 ↔ ∃𝑣𝐵 (𝑣 / 𝑦𝑋𝐴𝑥 = 𝑣 / 𝑦𝑋))
4543, 44bitri 264 . . . . . 6 (∃𝑣 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴}𝑥 = ((𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋)‘𝑣) ↔ ∃𝑣𝐵 (𝑣 / 𝑦𝑋𝐴𝑥 = 𝑣 / 𝑦𝑋))
4634, 45sylibr 224 . . . . 5 ((𝜑𝑥𝐴) → ∃𝑣 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴}𝑥 = ((𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋)‘𝑣))
4746ralrimiva 2966 . . . 4 (𝜑 → ∀𝑥𝐴𝑣 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴}𝑥 = ((𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋)‘𝑣))
48 dffo3 6374 . . . 4 ((𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋):{𝑧𝐵𝑧 / 𝑦𝑋𝐴}–onto𝐴 ↔ ((𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋):{𝑧𝐵𝑧 / 𝑦𝑋𝐴}⟶𝐴 ∧ ∀𝑥𝐴𝑣 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴}𝑥 = ((𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋)‘𝑣)))
4913, 47, 48sylanbrc 698 . . 3 (𝜑 → (𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋):{𝑧𝐵𝑧 / 𝑦𝑋𝐴}–onto𝐴)
50 fowdom 8476 . . 3 (((𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋) ∈ V ∧ (𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋):{𝑧𝐵𝑧 / 𝑦𝑋𝐴}–onto𝐴) → 𝐴* {𝑧𝐵𝑧 / 𝑦𝑋𝐴})
5116, 49, 50syl2anc 693 . 2 (𝜑𝐴* {𝑧𝐵𝑧 / 𝑦𝑋𝐴})
52 ssrab2 3687 . . . 4 {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ⊆ 𝐵
53 ssdomg 8001 . . . 4 (𝐵𝑊 → ({𝑧𝐵𝑧 / 𝑦𝑋𝐴} ⊆ 𝐵 → {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ≼ 𝐵))
5452, 53mpi 20 . . 3 (𝐵𝑊 → {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ≼ 𝐵)
55 domwdom 8479 . . 3 ({𝑧𝐵𝑧 / 𝑦𝑋𝐴} ≼ 𝐵 → {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ≼* 𝐵)
561, 54, 553syl 18 . 2 (𝜑 → {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ≼* 𝐵)
57 wdomtr 8480 . 2 ((𝐴* {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ∧ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ≼* 𝐵) → 𝐴* 𝐵)
5851, 56, 57syl2anc 693 1 (𝜑𝐴* 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  csb 3533  wss 3574   class class class wbr 4653  cmpt 4729   × cxp 5112  wf 5884  ontowfo 5886  cfv 5888  cdom 7953  * cwdom 8462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-wdom 8464
This theorem is referenced by:  wdomd  8486  brwdom3  8487  unwdomg  8489  xpwdomg  8490  wdom2d2  37602
  Copyright terms: Public domain W3C validator