MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpwdomg Structured version   Visualization version   GIF version

Theorem xpwdomg 8490
Description: Weak dominance of a Cartesian product. (Contributed by Stefan O'Rear, 13-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
xpwdomg ((𝐴* 𝐵𝐶* 𝐷) → (𝐴 × 𝐶) ≼* (𝐵 × 𝐷))

Proof of Theorem xpwdomg
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑔 𝑥 𝑦 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brwdom3i 8488 . . 3 (𝐴* 𝐵 → ∃𝑓𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏))
21adantr 481 . 2 ((𝐴* 𝐵𝐶* 𝐷) → ∃𝑓𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏))
3 brwdom3i 8488 . . 3 (𝐶* 𝐷 → ∃𝑔𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑))
43adantl 482 . 2 ((𝐴* 𝐵𝐶* 𝐷) → ∃𝑔𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑))
5 relwdom 8471 . . . . . . . . . 10 Rel ≼*
65brrelexi 5158 . . . . . . . . 9 (𝐴* 𝐵𝐴 ∈ V)
75brrelexi 5158 . . . . . . . . 9 (𝐶* 𝐷𝐶 ∈ V)
8 xpexg 6960 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴 × 𝐶) ∈ V)
96, 7, 8syl2an 494 . . . . . . . 8 ((𝐴* 𝐵𝐶* 𝐷) → (𝐴 × 𝐶) ∈ V)
109adantr 481 . . . . . . 7 (((𝐴* 𝐵𝐶* 𝐷) ∧ (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑))) → (𝐴 × 𝐶) ∈ V)
115brrelex2i 5159 . . . . . . . . 9 (𝐴* 𝐵𝐵 ∈ V)
125brrelex2i 5159 . . . . . . . . 9 (𝐶* 𝐷𝐷 ∈ V)
13 xpexg 6960 . . . . . . . . 9 ((𝐵 ∈ V ∧ 𝐷 ∈ V) → (𝐵 × 𝐷) ∈ V)
1411, 12, 13syl2an 494 . . . . . . . 8 ((𝐴* 𝐵𝐶* 𝐷) → (𝐵 × 𝐷) ∈ V)
1514adantr 481 . . . . . . 7 (((𝐴* 𝐵𝐶* 𝐷) ∧ (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑))) → (𝐵 × 𝐷) ∈ V)
16 pm3.2 463 . . . . . . . . . . . . . . . 16 (∃𝑏𝐵 𝑎 = (𝑓𝑏) → (∃𝑑𝐷 𝑐 = (𝑔𝑑) → (∃𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∃𝑑𝐷 𝑐 = (𝑔𝑑))))
1716ralimdv 2963 . . . . . . . . . . . . . . 15 (∃𝑏𝐵 𝑎 = (𝑓𝑏) → (∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑) → ∀𝑐𝐶 (∃𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∃𝑑𝐷 𝑐 = (𝑔𝑑))))
1817com12 32 . . . . . . . . . . . . . 14 (∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑) → (∃𝑏𝐵 𝑎 = (𝑓𝑏) → ∀𝑐𝐶 (∃𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∃𝑑𝐷 𝑐 = (𝑔𝑑))))
1918ralimdv 2963 . . . . . . . . . . . . 13 (∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑) → (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) → ∀𝑎𝐴𝑐𝐶 (∃𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∃𝑑𝐷 𝑐 = (𝑔𝑑))))
2019impcom 446 . . . . . . . . . . . 12 ((∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑)) → ∀𝑎𝐴𝑐𝐶 (∃𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∃𝑑𝐷 𝑐 = (𝑔𝑑)))
21 pm3.2 463 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑓𝑏) → (𝑐 = (𝑔𝑑) → (𝑎 = (𝑓𝑏) ∧ 𝑐 = (𝑔𝑑))))
2221reximdv 3016 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑓𝑏) → (∃𝑑𝐷 𝑐 = (𝑔𝑑) → ∃𝑑𝐷 (𝑎 = (𝑓𝑏) ∧ 𝑐 = (𝑔𝑑))))
2322com12 32 . . . . . . . . . . . . . . 15 (∃𝑑𝐷 𝑐 = (𝑔𝑑) → (𝑎 = (𝑓𝑏) → ∃𝑑𝐷 (𝑎 = (𝑓𝑏) ∧ 𝑐 = (𝑔𝑑))))
2423reximdv 3016 . . . . . . . . . . . . . 14 (∃𝑑𝐷 𝑐 = (𝑔𝑑) → (∃𝑏𝐵 𝑎 = (𝑓𝑏) → ∃𝑏𝐵𝑑𝐷 (𝑎 = (𝑓𝑏) ∧ 𝑐 = (𝑔𝑑))))
2524impcom 446 . . . . . . . . . . . . 13 ((∃𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∃𝑑𝐷 𝑐 = (𝑔𝑑)) → ∃𝑏𝐵𝑑𝐷 (𝑎 = (𝑓𝑏) ∧ 𝑐 = (𝑔𝑑)))
26252ralimi 2953 . . . . . . . . . . . 12 (∀𝑎𝐴𝑐𝐶 (∃𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∃𝑑𝐷 𝑐 = (𝑔𝑑)) → ∀𝑎𝐴𝑐𝐶𝑏𝐵𝑑𝐷 (𝑎 = (𝑓𝑏) ∧ 𝑐 = (𝑔𝑑)))
2720, 26syl 17 . . . . . . . . . . 11 ((∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑)) → ∀𝑎𝐴𝑐𝐶𝑏𝐵𝑑𝐷 (𝑎 = (𝑓𝑏) ∧ 𝑐 = (𝑔𝑑)))
28 eqeq1 2626 . . . . . . . . . . . . . 14 (𝑥 = ⟨𝑎, 𝑐⟩ → (𝑥 = ⟨(𝑓𝑏), (𝑔𝑑)⟩ ↔ ⟨𝑎, 𝑐⟩ = ⟨(𝑓𝑏), (𝑔𝑑)⟩))
29 vex 3203 . . . . . . . . . . . . . . 15 𝑎 ∈ V
30 vex 3203 . . . . . . . . . . . . . . 15 𝑐 ∈ V
3129, 30opth 4945 . . . . . . . . . . . . . 14 (⟨𝑎, 𝑐⟩ = ⟨(𝑓𝑏), (𝑔𝑑)⟩ ↔ (𝑎 = (𝑓𝑏) ∧ 𝑐 = (𝑔𝑑)))
3228, 31syl6bb 276 . . . . . . . . . . . . 13 (𝑥 = ⟨𝑎, 𝑐⟩ → (𝑥 = ⟨(𝑓𝑏), (𝑔𝑑)⟩ ↔ (𝑎 = (𝑓𝑏) ∧ 𝑐 = (𝑔𝑑))))
33322rexbidv 3057 . . . . . . . . . . . 12 (𝑥 = ⟨𝑎, 𝑐⟩ → (∃𝑏𝐵𝑑𝐷 𝑥 = ⟨(𝑓𝑏), (𝑔𝑑)⟩ ↔ ∃𝑏𝐵𝑑𝐷 (𝑎 = (𝑓𝑏) ∧ 𝑐 = (𝑔𝑑))))
3433ralxp 5263 . . . . . . . . . . 11 (∀𝑥 ∈ (𝐴 × 𝐶)∃𝑏𝐵𝑑𝐷 𝑥 = ⟨(𝑓𝑏), (𝑔𝑑)⟩ ↔ ∀𝑎𝐴𝑐𝐶𝑏𝐵𝑑𝐷 (𝑎 = (𝑓𝑏) ∧ 𝑐 = (𝑔𝑑)))
3527, 34sylibr 224 . . . . . . . . . 10 ((∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑)) → ∀𝑥 ∈ (𝐴 × 𝐶)∃𝑏𝐵𝑑𝐷 𝑥 = ⟨(𝑓𝑏), (𝑔𝑑)⟩)
3635r19.21bi 2932 . . . . . . . . 9 (((∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑)) ∧ 𝑥 ∈ (𝐴 × 𝐶)) → ∃𝑏𝐵𝑑𝐷 𝑥 = ⟨(𝑓𝑏), (𝑔𝑑)⟩)
37 vex 3203 . . . . . . . . . . . . . 14 𝑏 ∈ V
38 vex 3203 . . . . . . . . . . . . . 14 𝑑 ∈ V
3937, 38op1std 7178 . . . . . . . . . . . . 13 (𝑦 = ⟨𝑏, 𝑑⟩ → (1st𝑦) = 𝑏)
4039fveq2d 6195 . . . . . . . . . . . 12 (𝑦 = ⟨𝑏, 𝑑⟩ → (𝑓‘(1st𝑦)) = (𝑓𝑏))
4137, 38op2ndd 7179 . . . . . . . . . . . . 13 (𝑦 = ⟨𝑏, 𝑑⟩ → (2nd𝑦) = 𝑑)
4241fveq2d 6195 . . . . . . . . . . . 12 (𝑦 = ⟨𝑏, 𝑑⟩ → (𝑔‘(2nd𝑦)) = (𝑔𝑑))
4340, 42opeq12d 4410 . . . . . . . . . . 11 (𝑦 = ⟨𝑏, 𝑑⟩ → ⟨(𝑓‘(1st𝑦)), (𝑔‘(2nd𝑦))⟩ = ⟨(𝑓𝑏), (𝑔𝑑)⟩)
4443eqeq2d 2632 . . . . . . . . . 10 (𝑦 = ⟨𝑏, 𝑑⟩ → (𝑥 = ⟨(𝑓‘(1st𝑦)), (𝑔‘(2nd𝑦))⟩ ↔ 𝑥 = ⟨(𝑓𝑏), (𝑔𝑑)⟩))
4544rexxp 5264 . . . . . . . . 9 (∃𝑦 ∈ (𝐵 × 𝐷)𝑥 = ⟨(𝑓‘(1st𝑦)), (𝑔‘(2nd𝑦))⟩ ↔ ∃𝑏𝐵𝑑𝐷 𝑥 = ⟨(𝑓𝑏), (𝑔𝑑)⟩)
4636, 45sylibr 224 . . . . . . . 8 (((∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑)) ∧ 𝑥 ∈ (𝐴 × 𝐶)) → ∃𝑦 ∈ (𝐵 × 𝐷)𝑥 = ⟨(𝑓‘(1st𝑦)), (𝑔‘(2nd𝑦))⟩)
4746adantll 750 . . . . . . 7 ((((𝐴* 𝐵𝐶* 𝐷) ∧ (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑))) ∧ 𝑥 ∈ (𝐴 × 𝐶)) → ∃𝑦 ∈ (𝐵 × 𝐷)𝑥 = ⟨(𝑓‘(1st𝑦)), (𝑔‘(2nd𝑦))⟩)
4810, 15, 47wdom2d 8485 . . . . . 6 (((𝐴* 𝐵𝐶* 𝐷) ∧ (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑))) → (𝐴 × 𝐶) ≼* (𝐵 × 𝐷))
4948expr 643 . . . . 5 (((𝐴* 𝐵𝐶* 𝐷) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏)) → (∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑) → (𝐴 × 𝐶) ≼* (𝐵 × 𝐷)))
5049exlimdv 1861 . . . 4 (((𝐴* 𝐵𝐶* 𝐷) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏)) → (∃𝑔𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑) → (𝐴 × 𝐶) ≼* (𝐵 × 𝐷)))
5150ex 450 . . 3 ((𝐴* 𝐵𝐶* 𝐷) → (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) → (∃𝑔𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑) → (𝐴 × 𝐶) ≼* (𝐵 × 𝐷))))
5251exlimdv 1861 . 2 ((𝐴* 𝐵𝐶* 𝐷) → (∃𝑓𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) → (∃𝑔𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑) → (𝐴 × 𝐶) ≼* (𝐵 × 𝐷))))
532, 4, 52mp2d 49 1 ((𝐴* 𝐵𝐶* 𝐷) → (𝐴 × 𝐶) ≼* (𝐵 × 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wex 1704  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  cop 4183   class class class wbr 4653   × cxp 5112  cfv 5888  1st c1st 7166  2nd c2nd 7167  * cwdom 8462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-wdom 8464
This theorem is referenced by:  hsmexlem3  9250
  Copyright terms: Public domain W3C validator