MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wemoiso2 Structured version   Visualization version   GIF version

Theorem wemoiso2 7154
Description: Thus, there is at most one isomorphism between any two well-ordered sets. (Contributed by Stefan O'Rear, 12-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
wemoiso2 (𝑆 We 𝐵 → ∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵))
Distinct variable groups:   𝑅,𝑓   𝐴,𝑓   𝑆,𝑓   𝐵,𝑓

Proof of Theorem wemoiso2
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . . . 6 ((𝑆 We 𝐵 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑆 We 𝐵)
2 isof1o 6573 . . . . . . . . . 10 (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝑓:𝐴1-1-onto𝐵)
3 f1ofo 6144 . . . . . . . . . 10 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴onto𝐵)
4 forn 6118 . . . . . . . . . 10 (𝑓:𝐴onto𝐵 → ran 𝑓 = 𝐵)
52, 3, 43syl 18 . . . . . . . . 9 (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ran 𝑓 = 𝐵)
6 vex 3203 . . . . . . . . . 10 𝑓 ∈ V
76rnex 7100 . . . . . . . . 9 ran 𝑓 ∈ V
85, 7syl6eqelr 2710 . . . . . . . 8 (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐵 ∈ V)
98ad2antrl 764 . . . . . . 7 ((𝑆 We 𝐵 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐵 ∈ V)
10 exse 5078 . . . . . . 7 (𝐵 ∈ V → 𝑆 Se 𝐵)
119, 10syl 17 . . . . . 6 ((𝑆 We 𝐵 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑆 Se 𝐵)
121, 11jca 554 . . . . 5 ((𝑆 We 𝐵 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → (𝑆 We 𝐵𝑆 Se 𝐵))
13 weisoeq2 6606 . . . . 5 (((𝑆 We 𝐵𝑆 Se 𝐵) ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑓 = 𝑔)
1412, 13sylancom 701 . . . 4 ((𝑆 We 𝐵 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑓 = 𝑔)
1514ex 450 . . 3 (𝑆 We 𝐵 → ((𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → 𝑓 = 𝑔))
1615alrimivv 1856 . 2 (𝑆 We 𝐵 → ∀𝑓𝑔((𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → 𝑓 = 𝑔))
17 isoeq1 6567 . . 3 (𝑓 = 𝑔 → (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵)))
1817mo4 2517 . 2 (∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ ∀𝑓𝑔((𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → 𝑓 = 𝑔))
1916, 18sylibr 224 1 (𝑆 We 𝐵 → ∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wal 1481   = wceq 1483  wcel 1990  ∃*wmo 2471  Vcvv 3200   Se wse 5071   We wwe 5072  ran crn 5115  ontowfo 5886  1-1-ontowf1o 5887   Isom wiso 5889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897
This theorem is referenced by:  finnisoeu  8936
  Copyright terms: Public domain W3C validator