![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wemoiso | Structured version Visualization version GIF version |
Description: Thus, there is at most one isomorphism between any two well-ordered sets. TODO: Shorten finnisoeu 8936. (Contributed by Stefan O'Rear, 12-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
wemoiso | ⊢ (𝑅 We 𝐴 → ∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 473 | . . . . . 6 ⊢ ((𝑅 We 𝐴 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑅 We 𝐴) | |
2 | vex 3203 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
3 | isof1o 6573 | . . . . . . . . . 10 ⊢ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝑓:𝐴–1-1-onto→𝐵) | |
4 | f1of 6137 | . . . . . . . . . 10 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴⟶𝐵) | |
5 | 3, 4 | syl 17 | . . . . . . . . 9 ⊢ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝑓:𝐴⟶𝐵) |
6 | dmfex 7124 | . . . . . . . . 9 ⊢ ((𝑓 ∈ V ∧ 𝑓:𝐴⟶𝐵) → 𝐴 ∈ V) | |
7 | 2, 5, 6 | sylancr 695 | . . . . . . . 8 ⊢ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐴 ∈ V) |
8 | 7 | ad2antrl 764 | . . . . . . 7 ⊢ ((𝑅 We 𝐴 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐴 ∈ V) |
9 | exse 5078 | . . . . . . 7 ⊢ (𝐴 ∈ V → 𝑅 Se 𝐴) | |
10 | 8, 9 | syl 17 | . . . . . 6 ⊢ ((𝑅 We 𝐴 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑅 Se 𝐴) |
11 | 1, 10 | jca 554 | . . . . 5 ⊢ ((𝑅 We 𝐴 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → (𝑅 We 𝐴 ∧ 𝑅 Se 𝐴)) |
12 | weisoeq 6605 | . . . . 5 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑓 = 𝑔) | |
13 | 11, 12 | sylancom 701 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑓 = 𝑔) |
14 | 13 | ex 450 | . . 3 ⊢ (𝑅 We 𝐴 → ((𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → 𝑓 = 𝑔)) |
15 | 14 | alrimivv 1856 | . 2 ⊢ (𝑅 We 𝐴 → ∀𝑓∀𝑔((𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → 𝑓 = 𝑔)) |
16 | isoeq1 6567 | . . 3 ⊢ (𝑓 = 𝑔 → (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) | |
17 | 16 | mo4 2517 | . 2 ⊢ (∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ ∀𝑓∀𝑔((𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → 𝑓 = 𝑔)) |
18 | 15, 17 | sylibr 224 | 1 ⊢ (𝑅 We 𝐴 → ∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∀wal 1481 ∈ wcel 1990 ∃*wmo 2471 Vcvv 3200 Se wse 5071 We wwe 5072 ⟶wf 5884 –1-1-onto→wf1o 5887 Isom wiso 5889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 |
This theorem is referenced by: fzisoeu 39514 |
Copyright terms: Public domain | W3C validator |