MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfr3 Structured version   Visualization version   GIF version

Theorem wfr3 7435
Description: The principle of Well-Founded Recursion, part 3 of 3. Finally, we show that 𝐹 is unique. We do this by showing that any function 𝐻 with the same properties we proved of 𝐹 in wfr1 7433 and wfr2 7434 is identical to 𝐹. (Contributed by Scott Fenton, 18-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
wfr3.1 𝑅 We 𝐴
wfr3.2 𝑅 Se 𝐴
wfr3.3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfr3 ((𝐻 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐻𝑧) = (𝐺‘(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧)))) → 𝐹 = 𝐻)
Distinct variable groups:   𝑧,𝐴   𝑧,𝐹   𝑧,𝐺   𝑧,𝐻   𝑧,𝑅

Proof of Theorem wfr3
StepHypRef Expression
1 wfr3.1 . . 3 𝑅 We 𝐴
2 wfr3.2 . . 3 𝑅 Se 𝐴
31, 2pm3.2i 471 . 2 (𝑅 We 𝐴𝑅 Se 𝐴)
4 wfr3.3 . . . 4 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
51, 2, 4wfr1 7433 . . 3 𝐹 Fn 𝐴
61, 2, 4wfr2 7434 . . . 4 (𝑧𝐴 → (𝐹𝑧) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))))
76rgen 2922 . . 3 𝑧𝐴 (𝐹𝑧) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))
85, 7pm3.2i 471 . 2 (𝐹 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))))
9 wfr3g 7413 . 2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐻𝑧) = (𝐺‘(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝐹 = 𝐻)
103, 8, 9mp3an12 1414 1 ((𝐻 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐻𝑧) = (𝐺‘(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧)))) → 𝐹 = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wral 2912   Se wse 5071   We wwe 5072  cres 5116  Predcpred 5679   Fn wfn 5883  cfv 5888  wrecscwrecs 7406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-wrecs 7407
This theorem is referenced by:  tfr3ALT  7498
  Copyright terms: Public domain W3C validator