MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfr3 Structured version   Visualization version   Unicode version

Theorem wfr3 7435
Description: The principle of Well-Founded Recursion, part 3 of 3. Finally, we show that  F is unique. We do this by showing that any function  H with the same properties we proved of  F in wfr1 7433 and wfr2 7434 is identical to  F. (Contributed by Scott Fenton, 18-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
wfr3.1  |-  R  We  A
wfr3.2  |-  R Se  A
wfr3.3  |-  F  = wrecs ( R ,  A ,  G )
Assertion
Ref Expression
wfr3  |-  ( ( H  Fn  A  /\  A. z  e.  A  ( H `  z )  =  ( G `  ( H  |`  Pred ( R ,  A , 
z ) ) ) )  ->  F  =  H )
Distinct variable groups:    z, A    z, F    z, G    z, H    z, R

Proof of Theorem wfr3
StepHypRef Expression
1 wfr3.1 . . 3  |-  R  We  A
2 wfr3.2 . . 3  |-  R Se  A
31, 2pm3.2i 471 . 2  |-  ( R  We  A  /\  R Se  A )
4 wfr3.3 . . . 4  |-  F  = wrecs ( R ,  A ,  G )
51, 2, 4wfr1 7433 . . 3  |-  F  Fn  A
61, 2, 4wfr2 7434 . . . 4  |-  ( z  e.  A  ->  ( F `  z )  =  ( G `  ( F  |`  Pred ( R ,  A , 
z ) ) ) )
76rgen 2922 . . 3  |-  A. z  e.  A  ( F `  z )  =  ( G `  ( F  |`  Pred ( R ,  A ,  z )
) )
85, 7pm3.2i 471 . 2  |-  ( F  Fn  A  /\  A. z  e.  A  ( F `  z )  =  ( G `  ( F  |`  Pred ( R ,  A , 
z ) ) ) )
9 wfr3g 7413 . 2  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( F  Fn  A  /\  A. z  e.  A  ( F `  z )  =  ( G `  ( F  |`  Pred ( R ,  A , 
z ) ) ) )  /\  ( H  Fn  A  /\  A. z  e.  A  ( H `  z )  =  ( G `  ( H  |`  Pred ( R ,  A , 
z ) ) ) ) )  ->  F  =  H )
103, 8, 9mp3an12 1414 1  |-  ( ( H  Fn  A  /\  A. z  e.  A  ( H `  z )  =  ( G `  ( H  |`  Pred ( R ,  A , 
z ) ) ) )  ->  F  =  H )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   A.wral 2912   Se wse 5071    We wwe 5072    |` cres 5116   Predcpred 5679    Fn wfn 5883   ` cfv 5888  wrecscwrecs 7406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-wrecs 7407
This theorem is referenced by:  tfr3ALT  7498
  Copyright terms: Public domain W3C validator