![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wspthsswwlknon | Structured version Visualization version GIF version |
Description: The set of simple paths of a fixed length between two vertices is a subset of the set of walks of the fixed length between the two vertices. (Contributed by AV, 15-May-2021.) |
Ref | Expression |
---|---|
wspthsswwlknon | ⊢ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ⊆ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2622 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | 1 | wspthnonp 26744 | . . 3 ⊢ (𝑤 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) → ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))) |
3 | simp3l 1089 | . . 3 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)) → 𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝑤 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) → 𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵)) |
5 | 4 | ssriv 3607 | 1 ⊢ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ⊆ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 384 ∧ w3a 1037 ∃wex 1704 ∈ wcel 1990 Vcvv 3200 ⊆ wss 3574 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 ℕ0cn0 11292 Vtxcvtx 25874 SPathsOncspthson 26611 WWalksNOn cwwlksnon 26719 WSPathsNOn cwwspthsnon 26721 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-wwlksnon 26724 df-wspthsnon 26726 |
This theorem is referenced by: wspthnonfi 26818 |
Copyright terms: Public domain | W3C validator |