MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspthnonp Structured version   Visualization version   GIF version

Theorem wspthnonp 26744
Description: Properties of a set being a simple path of a fixed length between two vertices as word. (Contributed by AV, 14-May-2021.)
Hypothesis
Ref Expression
wwlknon.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wspthnonp (𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉) ∧ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊)))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑓,𝐺   𝑓,𝑁   𝑓,𝑊
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem wspthnonp
Dummy variables 𝑤 𝑎 𝑏 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6201 . . . . 5 (Vtx‘𝑔) ∈ V
21, 1pm3.2i 471 . . . 4 ((Vtx‘𝑔) ∈ V ∧ (Vtx‘𝑔) ∈ V)
32rgen2w 2925 . . 3 𝑛 ∈ ℕ0𝑔 ∈ V ((Vtx‘𝑔) ∈ V ∧ (Vtx‘𝑔) ∈ V)
4 df-wspthsnon 26726 . . . 4 WSPathsNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑎(𝑛 WWalksNOn 𝑔)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤}))
5 fveq2 6191 . . . . . 6 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
65, 5jca 554 . . . . 5 (𝑔 = 𝐺 → ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (Vtx‘𝑔) = (Vtx‘𝐺)))
76adantl 482 . . . 4 ((𝑛 = 𝑁𝑔 = 𝐺) → ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (Vtx‘𝑔) = (Vtx‘𝐺)))
84, 7el2mpt2cl 7251 . . 3 (∀𝑛 ∈ ℕ0𝑔 ∈ V ((Vtx‘𝑔) ∈ V ∧ (Vtx‘𝑔) ∈ V) → (𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))))
93, 8ax-mp 5 . 2 (𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))))
10 simprl 794 . . 3 ((𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ∧ ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))) → (𝑁 ∈ ℕ0𝐺 ∈ V))
11 wwlknon.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
1211eleq2i 2693 . . . . . . 7 (𝐴𝑉𝐴 ∈ (Vtx‘𝐺))
1311eleq2i 2693 . . . . . . 7 (𝐵𝑉𝐵 ∈ (Vtx‘𝐺))
1412, 13anbi12i 733 . . . . . 6 ((𝐴𝑉𝐵𝑉) ↔ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
1514biimpri 218 . . . . 5 ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (𝐴𝑉𝐵𝑉))
1615adantl 482 . . . 4 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) → (𝐴𝑉𝐵𝑉))
1716adantl 482 . . 3 ((𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ∧ ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))) → (𝐴𝑉𝐵𝑉))
18 eqid 2622 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
1918wspthnon 26743 . . . . . 6 ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ↔ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊)))
2019biimpd 219 . . . . 5 ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) → (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊)))
2120adantl 482 . . . 4 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) → (𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) → (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊)))
2221impcom 446 . . 3 ((𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ∧ ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))) → (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊))
2310, 17, 223jca 1242 . 2 ((𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ∧ ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉) ∧ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊)))
249, 23mpdan 702 1 (𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉) ∧ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wral 2912  {crab 2916  Vcvv 3200   class class class wbr 4653  cfv 5888  (class class class)co 6650  0cn0 11292  Vtxcvtx 25874  SPathsOncspthson 26611   WWalksNOn cwwlksnon 26719   WSPathsNOn cwwspthsnon 26721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-wwlksnon 26724  df-wspthsnon 26726
This theorem is referenced by:  wspthneq1eq2  26745  wspthsnonn0vne  26813  wspthsswwlknon  26817
  Copyright terms: Public domain W3C validator