MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcan Structured version   Visualization version   Unicode version

Theorem xpcan 5570
Description: Cancellation law for Cartesian product. (Contributed by NM, 30-Aug-2011.)
Assertion
Ref Expression
xpcan  |-  ( C  =/=  (/)  ->  ( ( C  X.  A )  =  ( C  X.  B
)  <->  A  =  B
) )

Proof of Theorem xpcan
StepHypRef Expression
1 xp11 5569 . . 3  |-  ( ( C  =/=  (/)  /\  A  =/=  (/) )  ->  (
( C  X.  A
)  =  ( C  X.  B )  <->  ( C  =  C  /\  A  =  B ) ) )
2 eqid 2622 . . . 4  |-  C  =  C
32biantrur 527 . . 3  |-  ( A  =  B  <->  ( C  =  C  /\  A  =  B ) )
41, 3syl6bbr 278 . 2  |-  ( ( C  =/=  (/)  /\  A  =/=  (/) )  ->  (
( C  X.  A
)  =  ( C  X.  B )  <->  A  =  B ) )
5 nne 2798 . . . 4  |-  ( -.  A  =/=  (/)  <->  A  =  (/) )
6 simpr 477 . . . . 5  |-  ( ( C  =/=  (/)  /\  A  =  (/) )  ->  A  =  (/) )
7 xpeq2 5129 . . . . . . . . . 10  |-  ( A  =  (/)  ->  ( C  X.  A )  =  ( C  X.  (/) ) )
8 xp0 5552 . . . . . . . . . 10  |-  ( C  X.  (/) )  =  (/)
97, 8syl6eq 2672 . . . . . . . . 9  |-  ( A  =  (/)  ->  ( C  X.  A )  =  (/) )
109eqeq1d 2624 . . . . . . . 8  |-  ( A  =  (/)  ->  ( ( C  X.  A )  =  ( C  X.  B )  <->  (/)  =  ( C  X.  B ) ) )
11 eqcom 2629 . . . . . . . 8  |-  ( (/)  =  ( C  X.  B )  <->  ( C  X.  B )  =  (/) )
1210, 11syl6bb 276 . . . . . . 7  |-  ( A  =  (/)  ->  ( ( C  X.  A )  =  ( C  X.  B )  <->  ( C  X.  B )  =  (/) ) )
1312adantl 482 . . . . . 6  |-  ( ( C  =/=  (/)  /\  A  =  (/) )  ->  (
( C  X.  A
)  =  ( C  X.  B )  <->  ( C  X.  B )  =  (/) ) )
14 df-ne 2795 . . . . . . . 8  |-  ( C  =/=  (/)  <->  -.  C  =  (/) )
15 xpeq0 5554 . . . . . . . . 9  |-  ( ( C  X.  B )  =  (/)  <->  ( C  =  (/)  \/  B  =  (/) ) )
16 orel1 397 . . . . . . . . 9  |-  ( -.  C  =  (/)  ->  (
( C  =  (/)  \/  B  =  (/) )  ->  B  =  (/) ) )
1715, 16syl5bi 232 . . . . . . . 8  |-  ( -.  C  =  (/)  ->  (
( C  X.  B
)  =  (/)  ->  B  =  (/) ) )
1814, 17sylbi 207 . . . . . . 7  |-  ( C  =/=  (/)  ->  ( ( C  X.  B )  =  (/)  ->  B  =  (/) ) )
1918adantr 481 . . . . . 6  |-  ( ( C  =/=  (/)  /\  A  =  (/) )  ->  (
( C  X.  B
)  =  (/)  ->  B  =  (/) ) )
2013, 19sylbid 230 . . . . 5  |-  ( ( C  =/=  (/)  /\  A  =  (/) )  ->  (
( C  X.  A
)  =  ( C  X.  B )  ->  B  =  (/) ) )
21 eqtr3 2643 . . . . 5  |-  ( ( A  =  (/)  /\  B  =  (/) )  ->  A  =  B )
226, 20, 21syl6an 568 . . . 4  |-  ( ( C  =/=  (/)  /\  A  =  (/) )  ->  (
( C  X.  A
)  =  ( C  X.  B )  ->  A  =  B )
)
235, 22sylan2b 492 . . 3  |-  ( ( C  =/=  (/)  /\  -.  A  =/=  (/) )  ->  (
( C  X.  A
)  =  ( C  X.  B )  ->  A  =  B )
)
24 xpeq2 5129 . . 3  |-  ( A  =  B  ->  ( C  X.  A )  =  ( C  X.  B
) )
2523, 24impbid1 215 . 2  |-  ( ( C  =/=  (/)  /\  -.  A  =/=  (/) )  ->  (
( C  X.  A
)  =  ( C  X.  B )  <->  A  =  B ) )
264, 25pm2.61dan 832 1  |-  ( C  =/=  (/)  ->  ( ( C  X.  A )  =  ( C  X.  B
)  <->  A  =  B
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    =/= wne 2794   (/)c0 3915    X. cxp 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator