MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpeq12 Structured version   Visualization version   GIF version

Theorem xpeq12 5134
Description: Equality theorem for Cartesian product. (Contributed by FL, 31-Aug-2009.)
Assertion
Ref Expression
xpeq12 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷))

Proof of Theorem xpeq12
StepHypRef Expression
1 xpeq1 5128 . 2 (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶))
2 xpeq2 5129 . 2 (𝐶 = 𝐷 → (𝐵 × 𝐶) = (𝐵 × 𝐷))
31, 2sylan9eq 2676 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483   × cxp 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-opab 4713  df-xp 5120
This theorem is referenced by:  xpeq12i  5137  xpeq12d  5140  xpid11  5347  xp11  5569  infxpenlem  8836  fpwwe2lem5  9456  pwfseqlem4a  9483  pwfseqlem4  9484  pwfseqlem5  9485  pwfseq  9486  pwsval  16146  mamufval  20191  mvmulfval  20348  txtopon  21394  txbasval  21409  txindislem  21436  ismet  22128  isxmet  22129  shsval  28171  prdsbnd2  33594  ismgmOLD  33649  opidon2OLD  33653  ttac  37603  rfovd  38295  fsovrfovd  38303  sblpnf  38509
  Copyright terms: Public domain W3C validator