MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isxmet Structured version   Visualization version   GIF version

Theorem isxmet 22129
Description: Express the predicate "𝐷 is an extended metric." (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
isxmet (𝑋𝐴 → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐷   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)

Proof of Theorem isxmet
Dummy variables 𝑑 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3212 . . . . 5 (𝑋𝐴𝑋 ∈ V)
2 xpeq12 5134 . . . . . . . . 9 ((𝑡 = 𝑋𝑡 = 𝑋) → (𝑡 × 𝑡) = (𝑋 × 𝑋))
32anidms 677 . . . . . . . 8 (𝑡 = 𝑋 → (𝑡 × 𝑡) = (𝑋 × 𝑋))
43oveq2d 6666 . . . . . . 7 (𝑡 = 𝑋 → (ℝ*𝑚 (𝑡 × 𝑡)) = (ℝ*𝑚 (𝑋 × 𝑋)))
5 raleq 3138 . . . . . . . . . 10 (𝑡 = 𝑋 → (∀𝑧𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) ↔ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))))
65anbi2d 740 . . . . . . . . 9 (𝑡 = 𝑋 → ((((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))) ↔ (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))))
76raleqbi1dv 3146 . . . . . . . 8 (𝑡 = 𝑋 → (∀𝑦𝑡 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))) ↔ ∀𝑦𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))))
87raleqbi1dv 3146 . . . . . . 7 (𝑡 = 𝑋 → (∀𝑥𝑡𝑦𝑡 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))) ↔ ∀𝑥𝑋𝑦𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))))
94, 8rabeqbidv 3195 . . . . . 6 (𝑡 = 𝑋 → {𝑑 ∈ (ℝ*𝑚 (𝑡 × 𝑡)) ∣ ∀𝑥𝑡𝑦𝑡 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))} = {𝑑 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥𝑋𝑦𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))})
10 df-xmet 19739 . . . . . 6 ∞Met = (𝑡 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑡 × 𝑡)) ∣ ∀𝑥𝑡𝑦𝑡 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))})
11 ovex 6678 . . . . . . 7 (ℝ*𝑚 (𝑋 × 𝑋)) ∈ V
1211rabex 4813 . . . . . 6 {𝑑 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥𝑋𝑦𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))} ∈ V
139, 10, 12fvmpt 6282 . . . . 5 (𝑋 ∈ V → (∞Met‘𝑋) = {𝑑 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥𝑋𝑦𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))})
141, 13syl 17 . . . 4 (𝑋𝐴 → (∞Met‘𝑋) = {𝑑 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥𝑋𝑦𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))})
1514eleq2d 2687 . . 3 (𝑋𝐴 → (𝐷 ∈ (∞Met‘𝑋) ↔ 𝐷 ∈ {𝑑 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥𝑋𝑦𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))}))
16 oveq 6656 . . . . . . . 8 (𝑑 = 𝐷 → (𝑥𝑑𝑦) = (𝑥𝐷𝑦))
1716eqeq1d 2624 . . . . . . 7 (𝑑 = 𝐷 → ((𝑥𝑑𝑦) = 0 ↔ (𝑥𝐷𝑦) = 0))
1817bibi1d 333 . . . . . 6 (𝑑 = 𝐷 → (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ↔ ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)))
19 oveq 6656 . . . . . . . . 9 (𝑑 = 𝐷 → (𝑧𝑑𝑥) = (𝑧𝐷𝑥))
20 oveq 6656 . . . . . . . . 9 (𝑑 = 𝐷 → (𝑧𝑑𝑦) = (𝑧𝐷𝑦))
2119, 20oveq12d 6668 . . . . . . . 8 (𝑑 = 𝐷 → ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) = ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
2216, 21breq12d 4666 . . . . . . 7 (𝑑 = 𝐷 → ((𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) ↔ (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))
2322ralbidv 2986 . . . . . 6 (𝑑 = 𝐷 → (∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) ↔ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))
2418, 23anbi12d 747 . . . . 5 (𝑑 = 𝐷 → ((((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))) ↔ (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))
25242ralbidv 2989 . . . 4 (𝑑 = 𝐷 → (∀𝑥𝑋𝑦𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))) ↔ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))
2625elrab 3363 . . 3 (𝐷 ∈ {𝑑 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥𝑋𝑦𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))} ↔ (𝐷 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))
2715, 26syl6bb 276 . 2 (𝑋𝐴 → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
28 xrex 11829 . . . 4 * ∈ V
29 sqxpexg 6963 . . . 4 (𝑋𝐴 → (𝑋 × 𝑋) ∈ V)
30 elmapg 7870 . . . 4 ((ℝ* ∈ V ∧ (𝑋 × 𝑋) ∈ V) → (𝐷 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ↔ 𝐷:(𝑋 × 𝑋)⟶ℝ*))
3128, 29, 30sylancr 695 . . 3 (𝑋𝐴 → (𝐷 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ↔ 𝐷:(𝑋 × 𝑋)⟶ℝ*))
3231anbi1d 741 . 2 (𝑋𝐴 → ((𝐷 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
3327, 32bitrd 268 1 (𝑋𝐴 → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200   class class class wbr 4653   × cxp 5112  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  0cc0 9936  *cxr 10073  cle 10075   +𝑒 cxad 11944  ∞Metcxmt 19731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-xr 10078  df-xmet 19739
This theorem is referenced by:  isxmetd  22131  xmetf  22134  ismet2  22138  xmeteq0  22143  xmettri2  22145  imasf1oxmet  22180  pstmxmet  29940
  Copyright terms: Public domain W3C validator