![]() |
Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sblpnf | Structured version Visualization version GIF version |
Description: The infinity ball in the absolute value metric is just the whole space. 𝑆 analogue of blpnf 22202. (Contributed by Steve Rodriguez, 8-Nov-2015.) |
Ref | Expression |
---|---|
sblpnf.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
sblpnf.d | ⊢ 𝐷 = ((abs ∘ − ) ↾ (𝑆 × 𝑆)) |
Ref | Expression |
---|---|
sblpnf | ⊢ ((𝜑 ∧ 𝑃 ∈ 𝑆) → (𝑃(ball‘𝐷)+∞) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sblpnf.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | elpri 4197 | . . 3 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ)) | |
3 | sblpnf.d | . . . . 5 ⊢ 𝐷 = ((abs ∘ − ) ↾ (𝑆 × 𝑆)) | |
4 | eqid 2622 | . . . . . . 7 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
5 | 4 | remet 22593 | . . . . . 6 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ) |
6 | xpeq12 5134 | . . . . . . . . 9 ⊢ ((𝑆 = ℝ ∧ 𝑆 = ℝ) → (𝑆 × 𝑆) = (ℝ × ℝ)) | |
7 | 6 | anidms 677 | . . . . . . . 8 ⊢ (𝑆 = ℝ → (𝑆 × 𝑆) = (ℝ × ℝ)) |
8 | 7 | reseq2d 5396 | . . . . . . 7 ⊢ (𝑆 = ℝ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (ℝ × ℝ))) |
9 | fveq2 6191 | . . . . . . 7 ⊢ (𝑆 = ℝ → (Met‘𝑆) = (Met‘ℝ)) | |
10 | 8, 9 | eleq12d 2695 | . . . . . 6 ⊢ (𝑆 = ℝ → (((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆) ↔ ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ))) |
11 | 5, 10 | mpbiri 248 | . . . . 5 ⊢ (𝑆 = ℝ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆)) |
12 | 3, 11 | syl5eqel 2705 | . . . 4 ⊢ (𝑆 = ℝ → 𝐷 ∈ (Met‘𝑆)) |
13 | relco 5633 | . . . . . . . . 9 ⊢ Rel (abs ∘ − ) | |
14 | resdm 5441 | . . . . . . . . 9 ⊢ (Rel (abs ∘ − ) → ((abs ∘ − ) ↾ dom (abs ∘ − )) = (abs ∘ − )) | |
15 | 13, 14 | ax-mp 5 | . . . . . . . 8 ⊢ ((abs ∘ − ) ↾ dom (abs ∘ − )) = (abs ∘ − ) |
16 | absf 14077 | . . . . . . . . . . . 12 ⊢ abs:ℂ⟶ℝ | |
17 | ax-resscn 9993 | . . . . . . . . . . . 12 ⊢ ℝ ⊆ ℂ | |
18 | fss 6056 | . . . . . . . . . . . 12 ⊢ ((abs:ℂ⟶ℝ ∧ ℝ ⊆ ℂ) → abs:ℂ⟶ℂ) | |
19 | 16, 17, 18 | mp2an 708 | . . . . . . . . . . 11 ⊢ abs:ℂ⟶ℂ |
20 | subf 10283 | . . . . . . . . . . 11 ⊢ − :(ℂ × ℂ)⟶ℂ | |
21 | fco 6058 | . . . . . . . . . . 11 ⊢ ((abs:ℂ⟶ℂ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℂ) | |
22 | 19, 20, 21 | mp2an 708 | . . . . . . . . . 10 ⊢ (abs ∘ − ):(ℂ × ℂ)⟶ℂ |
23 | 22 | fdmi 6052 | . . . . . . . . 9 ⊢ dom (abs ∘ − ) = (ℂ × ℂ) |
24 | 23 | reseq2i 5393 | . . . . . . . 8 ⊢ ((abs ∘ − ) ↾ dom (abs ∘ − )) = ((abs ∘ − ) ↾ (ℂ × ℂ)) |
25 | 15, 24 | eqtr3i 2646 | . . . . . . 7 ⊢ (abs ∘ − ) = ((abs ∘ − ) ↾ (ℂ × ℂ)) |
26 | cnmet 22575 | . . . . . . 7 ⊢ (abs ∘ − ) ∈ (Met‘ℂ) | |
27 | 25, 26 | eqeltrri 2698 | . . . . . 6 ⊢ ((abs ∘ − ) ↾ (ℂ × ℂ)) ∈ (Met‘ℂ) |
28 | xpeq12 5134 | . . . . . . . . 9 ⊢ ((𝑆 = ℂ ∧ 𝑆 = ℂ) → (𝑆 × 𝑆) = (ℂ × ℂ)) | |
29 | 28 | anidms 677 | . . . . . . . 8 ⊢ (𝑆 = ℂ → (𝑆 × 𝑆) = (ℂ × ℂ)) |
30 | 29 | reseq2d 5396 | . . . . . . 7 ⊢ (𝑆 = ℂ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (ℂ × ℂ))) |
31 | fveq2 6191 | . . . . . . 7 ⊢ (𝑆 = ℂ → (Met‘𝑆) = (Met‘ℂ)) | |
32 | 30, 31 | eleq12d 2695 | . . . . . 6 ⊢ (𝑆 = ℂ → (((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆) ↔ ((abs ∘ − ) ↾ (ℂ × ℂ)) ∈ (Met‘ℂ))) |
33 | 27, 32 | mpbiri 248 | . . . . 5 ⊢ (𝑆 = ℂ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆)) |
34 | 3, 33 | syl5eqel 2705 | . . . 4 ⊢ (𝑆 = ℂ → 𝐷 ∈ (Met‘𝑆)) |
35 | 12, 34 | jaoi 394 | . . 3 ⊢ ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝐷 ∈ (Met‘𝑆)) |
36 | 1, 2, 35 | 3syl 18 | . 2 ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑆)) |
37 | blpnf 22202 | . 2 ⊢ ((𝐷 ∈ (Met‘𝑆) ∧ 𝑃 ∈ 𝑆) → (𝑃(ball‘𝐷)+∞) = 𝑆) | |
38 | 36, 37 | sylan 488 | 1 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝑆) → (𝑃(ball‘𝐷)+∞) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 383 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ⊆ wss 3574 {cpr 4179 × cxp 5112 dom cdm 5114 ↾ cres 5116 ∘ ccom 5118 Rel wrel 5119 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ℂcc 9934 ℝcr 9935 +∞cpnf 10071 − cmin 10266 abscabs 13974 Metcme 19732 ballcbl 19733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 |
This theorem is referenced by: dvconstbi 38533 |
Copyright terms: Public domain | W3C validator |