MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvmulfval Structured version   Visualization version   GIF version

Theorem mvmulfval 20348
Description: Functional value of the matrix vector multiplication operator. (Contributed by AV, 23-Feb-2019.)
Hypotheses
Ref Expression
mvmulfval.x × = (𝑅 maVecMul ⟨𝑀, 𝑁⟩)
mvmulfval.b 𝐵 = (Base‘𝑅)
mvmulfval.t · = (.r𝑅)
mvmulfval.r (𝜑𝑅𝑉)
mvmulfval.m (𝜑𝑀 ∈ Fin)
mvmulfval.n (𝜑𝑁 ∈ Fin)
Assertion
Ref Expression
mvmulfval (𝜑× = (𝑥 ∈ (𝐵𝑚 (𝑀 × 𝑁)), 𝑦 ∈ (𝐵𝑚 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑦𝑗)))))))
Distinct variable groups:   𝑖,𝑗,𝑥,𝑦,𝜑   𝑖,𝑀,𝑗,𝑥,𝑦   𝑖,𝑁,𝑗,𝑥,𝑦   𝑅,𝑖,𝑗,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥, · ,𝑦,𝑖
Allowed substitution hints:   𝐵(𝑖,𝑗)   · (𝑗)   × (𝑥,𝑦,𝑖,𝑗)   𝑉(𝑥,𝑦,𝑖,𝑗)

Proof of Theorem mvmulfval
Dummy variables 𝑚 𝑛 𝑜 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mvmulfval.x . 2 × = (𝑅 maVecMul ⟨𝑀, 𝑁⟩)
2 df-mvmul 20347 . . . 4 maVecMul = (𝑟 ∈ V, 𝑜 ∈ V ↦ (1st𝑜) / 𝑚(2nd𝑜) / 𝑛(𝑥 ∈ ((Base‘𝑟) ↑𝑚 (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑𝑚 𝑛) ↦ (𝑖𝑚 ↦ (𝑟 Σg (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗)))))))
32a1i 11 . . 3 (𝜑 → maVecMul = (𝑟 ∈ V, 𝑜 ∈ V ↦ (1st𝑜) / 𝑚(2nd𝑜) / 𝑛(𝑥 ∈ ((Base‘𝑟) ↑𝑚 (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑𝑚 𝑛) ↦ (𝑖𝑚 ↦ (𝑟 Σg (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗))))))))
4 fvex 6201 . . . . 5 (1st𝑜) ∈ V
5 fvex 6201 . . . . 5 (2nd𝑜) ∈ V
6 xpeq12 5134 . . . . . . 7 ((𝑚 = (1st𝑜) ∧ 𝑛 = (2nd𝑜)) → (𝑚 × 𝑛) = ((1st𝑜) × (2nd𝑜)))
76oveq2d 6666 . . . . . 6 ((𝑚 = (1st𝑜) ∧ 𝑛 = (2nd𝑜)) → ((Base‘𝑟) ↑𝑚 (𝑚 × 𝑛)) = ((Base‘𝑟) ↑𝑚 ((1st𝑜) × (2nd𝑜))))
8 oveq2 6658 . . . . . . 7 (𝑛 = (2nd𝑜) → ((Base‘𝑟) ↑𝑚 𝑛) = ((Base‘𝑟) ↑𝑚 (2nd𝑜)))
98adantl 482 . . . . . 6 ((𝑚 = (1st𝑜) ∧ 𝑛 = (2nd𝑜)) → ((Base‘𝑟) ↑𝑚 𝑛) = ((Base‘𝑟) ↑𝑚 (2nd𝑜)))
10 simpl 473 . . . . . . 7 ((𝑚 = (1st𝑜) ∧ 𝑛 = (2nd𝑜)) → 𝑚 = (1st𝑜))
11 simpr 477 . . . . . . . . 9 ((𝑚 = (1st𝑜) ∧ 𝑛 = (2nd𝑜)) → 𝑛 = (2nd𝑜))
1211mpteq1d 4738 . . . . . . . 8 ((𝑚 = (1st𝑜) ∧ 𝑛 = (2nd𝑜)) → (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗))) = (𝑗 ∈ (2nd𝑜) ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗))))
1312oveq2d 6666 . . . . . . 7 ((𝑚 = (1st𝑜) ∧ 𝑛 = (2nd𝑜)) → (𝑟 Σg (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗)))) = (𝑟 Σg (𝑗 ∈ (2nd𝑜) ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗)))))
1410, 13mpteq12dv 4733 . . . . . 6 ((𝑚 = (1st𝑜) ∧ 𝑛 = (2nd𝑜)) → (𝑖𝑚 ↦ (𝑟 Σg (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗))))) = (𝑖 ∈ (1st𝑜) ↦ (𝑟 Σg (𝑗 ∈ (2nd𝑜) ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗))))))
157, 9, 14mpt2eq123dv 6717 . . . . 5 ((𝑚 = (1st𝑜) ∧ 𝑛 = (2nd𝑜)) → (𝑥 ∈ ((Base‘𝑟) ↑𝑚 (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑𝑚 𝑛) ↦ (𝑖𝑚 ↦ (𝑟 Σg (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗)))))) = (𝑥 ∈ ((Base‘𝑟) ↑𝑚 ((1st𝑜) × (2nd𝑜))), 𝑦 ∈ ((Base‘𝑟) ↑𝑚 (2nd𝑜)) ↦ (𝑖 ∈ (1st𝑜) ↦ (𝑟 Σg (𝑗 ∈ (2nd𝑜) ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗)))))))
164, 5, 15csbie2 3563 . . . 4 (1st𝑜) / 𝑚(2nd𝑜) / 𝑛(𝑥 ∈ ((Base‘𝑟) ↑𝑚 (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑𝑚 𝑛) ↦ (𝑖𝑚 ↦ (𝑟 Σg (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗)))))) = (𝑥 ∈ ((Base‘𝑟) ↑𝑚 ((1st𝑜) × (2nd𝑜))), 𝑦 ∈ ((Base‘𝑟) ↑𝑚 (2nd𝑜)) ↦ (𝑖 ∈ (1st𝑜) ↦ (𝑟 Σg (𝑗 ∈ (2nd𝑜) ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗))))))
17 simprl 794 . . . . . . . 8 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → 𝑟 = 𝑅)
1817fveq2d 6195 . . . . . . 7 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → (Base‘𝑟) = (Base‘𝑅))
19 mvmulfval.b . . . . . . 7 𝐵 = (Base‘𝑅)
2018, 19syl6eqr 2674 . . . . . 6 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → (Base‘𝑟) = 𝐵)
21 fveq2 6191 . . . . . . . . 9 (𝑜 = ⟨𝑀, 𝑁⟩ → (1st𝑜) = (1st ‘⟨𝑀, 𝑁⟩))
2221ad2antll 765 . . . . . . . 8 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → (1st𝑜) = (1st ‘⟨𝑀, 𝑁⟩))
23 mvmulfval.m . . . . . . . . . 10 (𝜑𝑀 ∈ Fin)
24 mvmulfval.n . . . . . . . . . 10 (𝜑𝑁 ∈ Fin)
25 op1stg 7180 . . . . . . . . . 10 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → (1st ‘⟨𝑀, 𝑁⟩) = 𝑀)
2623, 24, 25syl2anc 693 . . . . . . . . 9 (𝜑 → (1st ‘⟨𝑀, 𝑁⟩) = 𝑀)
2726adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → (1st ‘⟨𝑀, 𝑁⟩) = 𝑀)
2822, 27eqtrd 2656 . . . . . . 7 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → (1st𝑜) = 𝑀)
29 fveq2 6191 . . . . . . . . 9 (𝑜 = ⟨𝑀, 𝑁⟩ → (2nd𝑜) = (2nd ‘⟨𝑀, 𝑁⟩))
3029ad2antll 765 . . . . . . . 8 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → (2nd𝑜) = (2nd ‘⟨𝑀, 𝑁⟩))
31 op2ndg 7181 . . . . . . . . . 10 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → (2nd ‘⟨𝑀, 𝑁⟩) = 𝑁)
3223, 24, 31syl2anc 693 . . . . . . . . 9 (𝜑 → (2nd ‘⟨𝑀, 𝑁⟩) = 𝑁)
3332adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → (2nd ‘⟨𝑀, 𝑁⟩) = 𝑁)
3430, 33eqtrd 2656 . . . . . . 7 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → (2nd𝑜) = 𝑁)
3528, 34xpeq12d 5140 . . . . . 6 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → ((1st𝑜) × (2nd𝑜)) = (𝑀 × 𝑁))
3620, 35oveq12d 6668 . . . . 5 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → ((Base‘𝑟) ↑𝑚 ((1st𝑜) × (2nd𝑜))) = (𝐵𝑚 (𝑀 × 𝑁)))
3720, 34oveq12d 6668 . . . . 5 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → ((Base‘𝑟) ↑𝑚 (2nd𝑜)) = (𝐵𝑚 𝑁))
38 fveq2 6191 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
3938adantr 481 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩) → (.r𝑟) = (.r𝑅))
4039adantl 482 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → (.r𝑟) = (.r𝑅))
41 mvmulfval.t . . . . . . . . . 10 · = (.r𝑅)
4240, 41syl6eqr 2674 . . . . . . . . 9 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → (.r𝑟) = · )
4342oveqd 6667 . . . . . . . 8 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗)) = ((𝑖𝑥𝑗) · (𝑦𝑗)))
4434, 43mpteq12dv 4733 . . . . . . 7 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → (𝑗 ∈ (2nd𝑜) ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗))) = (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑦𝑗))))
4517, 44oveq12d 6668 . . . . . 6 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → (𝑟 Σg (𝑗 ∈ (2nd𝑜) ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗)))) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑦𝑗)))))
4628, 45mpteq12dv 4733 . . . . 5 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → (𝑖 ∈ (1st𝑜) ↦ (𝑟 Σg (𝑗 ∈ (2nd𝑜) ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗))))) = (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑦𝑗))))))
4736, 37, 46mpt2eq123dv 6717 . . . 4 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → (𝑥 ∈ ((Base‘𝑟) ↑𝑚 ((1st𝑜) × (2nd𝑜))), 𝑦 ∈ ((Base‘𝑟) ↑𝑚 (2nd𝑜)) ↦ (𝑖 ∈ (1st𝑜) ↦ (𝑟 Σg (𝑗 ∈ (2nd𝑜) ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗)))))) = (𝑥 ∈ (𝐵𝑚 (𝑀 × 𝑁)), 𝑦 ∈ (𝐵𝑚 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑦𝑗)))))))
4816, 47syl5eq 2668 . . 3 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → (1st𝑜) / 𝑚(2nd𝑜) / 𝑛(𝑥 ∈ ((Base‘𝑟) ↑𝑚 (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑𝑚 𝑛) ↦ (𝑖𝑚 ↦ (𝑟 Σg (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗)))))) = (𝑥 ∈ (𝐵𝑚 (𝑀 × 𝑁)), 𝑦 ∈ (𝐵𝑚 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑦𝑗)))))))
49 mvmulfval.r . . . 4 (𝜑𝑅𝑉)
50 elex 3212 . . . 4 (𝑅𝑉𝑅 ∈ V)
5149, 50syl 17 . . 3 (𝜑𝑅 ∈ V)
52 opex 4932 . . . 4 𝑀, 𝑁⟩ ∈ V
5352a1i 11 . . 3 (𝜑 → ⟨𝑀, 𝑁⟩ ∈ V)
54 ovex 6678 . . . . 5 (𝐵𝑚 (𝑀 × 𝑁)) ∈ V
55 ovex 6678 . . . . 5 (𝐵𝑚 𝑁) ∈ V
5654, 55mpt2ex 7247 . . . 4 (𝑥 ∈ (𝐵𝑚 (𝑀 × 𝑁)), 𝑦 ∈ (𝐵𝑚 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑦𝑗)))))) ∈ V
5756a1i 11 . . 3 (𝜑 → (𝑥 ∈ (𝐵𝑚 (𝑀 × 𝑁)), 𝑦 ∈ (𝐵𝑚 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑦𝑗)))))) ∈ V)
583, 48, 51, 53, 57ovmpt2d 6788 . 2 (𝜑 → (𝑅 maVecMul ⟨𝑀, 𝑁⟩) = (𝑥 ∈ (𝐵𝑚 (𝑀 × 𝑁)), 𝑦 ∈ (𝐵𝑚 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑦𝑗)))))))
591, 58syl5eq 2668 1 (𝜑× = (𝑥 ∈ (𝐵𝑚 (𝑀 × 𝑁)), 𝑦 ∈ (𝐵𝑚 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑦𝑗)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  csb 3533  cop 4183  cmpt 4729   × cxp 5112  cfv 5888  (class class class)co 6650  cmpt2 6652  1st c1st 7166  2nd c2nd 7167  𝑚 cmap 7857  Fincfn 7955  Basecbs 15857  .rcmulr 15942   Σg cgsu 16101   maVecMul cmvmul 20346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-mvmul 20347
This theorem is referenced by:  mvmulval  20349  mavmuldm  20356  mavmul0g  20359
  Copyright terms: Public domain W3C validator