![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpeq2i | Structured version Visualization version GIF version |
Description: Equality inference for Cartesian product. (Contributed by NM, 21-Dec-2008.) |
Ref | Expression |
---|---|
xpeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
xpeq2i | ⊢ (𝐶 × 𝐴) = (𝐶 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | xpeq2 5129 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 × 𝐴) = (𝐶 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 × cxp 5112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-opab 4713 df-xp 5120 |
This theorem is referenced by: xpindir 5256 xpssres 5434 difxp1 5559 xpima 5576 xpexgALT 7161 curry1 7269 fparlem3 7279 fparlem4 7280 xp1en 8046 xp2cda 9002 xpcdaen 9005 pwcda1 9016 pwcdandom 9489 yonedalem3b 16919 yonedalem3 16920 pws1 18616 pwsmgp 18618 xkoinjcn 21490 imasdsf1olem 22178 df0op2 28611 ho01i 28687 nmop0h 28850 mbfmcst 30321 0rrv 30513 cvmlift2lem12 31296 zrdivrng 33752 |
Copyright terms: Public domain | W3C validator |