MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcdaen Structured version   Visualization version   GIF version

Theorem xpcdaen 9005
Description: Cardinal multiplication distributes over cardinal addition. Theorem 6I(3) of [Enderton] p. 142. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xpcdaen ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 × (𝐵 +𝑐 𝐶)) ≈ ((𝐴 × 𝐵) +𝑐 (𝐴 × 𝐶)))

Proof of Theorem xpcdaen
StepHypRef Expression
1 enrefg 7987 . . . . . 6 (𝐴𝑉𝐴𝐴)
213ad2ant1 1082 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐴𝐴)
3 simp2 1062 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐵𝑊)
4 0ex 4790 . . . . . . 7 ∅ ∈ V
5 xpsneng 8045 . . . . . . 7 ((𝐵𝑊 ∧ ∅ ∈ V) → (𝐵 × {∅}) ≈ 𝐵)
63, 4, 5sylancl 694 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐵 × {∅}) ≈ 𝐵)
76ensymd 8007 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐵 ≈ (𝐵 × {∅}))
8 xpen 8123 . . . . 5 ((𝐴𝐴𝐵 ≈ (𝐵 × {∅})) → (𝐴 × 𝐵) ≈ (𝐴 × (𝐵 × {∅})))
92, 7, 8syl2anc 693 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 × 𝐵) ≈ (𝐴 × (𝐵 × {∅})))
10 simp3 1063 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐶𝑋)
11 1on 7567 . . . . . . 7 1𝑜 ∈ On
12 xpsneng 8045 . . . . . . 7 ((𝐶𝑋 ∧ 1𝑜 ∈ On) → (𝐶 × {1𝑜}) ≈ 𝐶)
1310, 11, 12sylancl 694 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐶 × {1𝑜}) ≈ 𝐶)
1413ensymd 8007 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐶 ≈ (𝐶 × {1𝑜}))
15 xpen 8123 . . . . 5 ((𝐴𝐴𝐶 ≈ (𝐶 × {1𝑜})) → (𝐴 × 𝐶) ≈ (𝐴 × (𝐶 × {1𝑜})))
162, 14, 15syl2anc 693 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 × 𝐶) ≈ (𝐴 × (𝐶 × {1𝑜})))
17 xp01disj 7576 . . . . . . 7 ((𝐵 × {∅}) ∩ (𝐶 × {1𝑜})) = ∅
1817xpeq2i 5136 . . . . . 6 (𝐴 × ((𝐵 × {∅}) ∩ (𝐶 × {1𝑜}))) = (𝐴 × ∅)
19 xpindi 5255 . . . . . 6 (𝐴 × ((𝐵 × {∅}) ∩ (𝐶 × {1𝑜}))) = ((𝐴 × (𝐵 × {∅})) ∩ (𝐴 × (𝐶 × {1𝑜})))
20 xp0 5552 . . . . . 6 (𝐴 × ∅) = ∅
2118, 19, 203eqtr3i 2652 . . . . 5 ((𝐴 × (𝐵 × {∅})) ∩ (𝐴 × (𝐶 × {1𝑜}))) = ∅
2221a1i 11 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴 × (𝐵 × {∅})) ∩ (𝐴 × (𝐶 × {1𝑜}))) = ∅)
23 cdaenun 8996 . . . 4 (((𝐴 × 𝐵) ≈ (𝐴 × (𝐵 × {∅})) ∧ (𝐴 × 𝐶) ≈ (𝐴 × (𝐶 × {1𝑜})) ∧ ((𝐴 × (𝐵 × {∅})) ∩ (𝐴 × (𝐶 × {1𝑜}))) = ∅) → ((𝐴 × 𝐵) +𝑐 (𝐴 × 𝐶)) ≈ ((𝐴 × (𝐵 × {∅})) ∪ (𝐴 × (𝐶 × {1𝑜}))))
249, 16, 22, 23syl3anc 1326 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴 × 𝐵) +𝑐 (𝐴 × 𝐶)) ≈ ((𝐴 × (𝐵 × {∅})) ∪ (𝐴 × (𝐶 × {1𝑜}))))
25 cdaval 8992 . . . . . 6 ((𝐵𝑊𝐶𝑋) → (𝐵 +𝑐 𝐶) = ((𝐵 × {∅}) ∪ (𝐶 × {1𝑜})))
26253adant1 1079 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐵 +𝑐 𝐶) = ((𝐵 × {∅}) ∪ (𝐶 × {1𝑜})))
2726xpeq2d 5139 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 × (𝐵 +𝑐 𝐶)) = (𝐴 × ((𝐵 × {∅}) ∪ (𝐶 × {1𝑜}))))
28 xpundi 5171 . . . 4 (𝐴 × ((𝐵 × {∅}) ∪ (𝐶 × {1𝑜}))) = ((𝐴 × (𝐵 × {∅})) ∪ (𝐴 × (𝐶 × {1𝑜})))
2927, 28syl6eq 2672 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 × (𝐵 +𝑐 𝐶)) = ((𝐴 × (𝐵 × {∅})) ∪ (𝐴 × (𝐶 × {1𝑜}))))
3024, 29breqtrrd 4681 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴 × 𝐵) +𝑐 (𝐴 × 𝐶)) ≈ (𝐴 × (𝐵 +𝑐 𝐶)))
3130ensymd 8007 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 × (𝐵 +𝑐 𝐶)) ≈ ((𝐴 × 𝐵) +𝑐 (𝐴 × 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  cun 3572  cin 3573  c0 3915  {csn 4177   class class class wbr 4653   × cxp 5112  Oncon0 5723  (class class class)co 6650  1𝑜c1o 7553  cen 7952   +𝑐 ccda 8989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-cda 8990
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator