MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpima Structured version   Visualization version   Unicode version

Theorem xpima 5576
Description: The image by a constant function (or other Cartesian product). (Contributed by Thierry Arnoux, 4-Feb-2017.)
Assertion
Ref Expression
xpima  |-  ( ( A  X.  B )
" C )  =  if ( ( A  i^i  C )  =  (/) ,  (/) ,  B )

Proof of Theorem xpima
StepHypRef Expression
1 exmid 431 . . 3  |-  ( ( A  i^i  C )  =  (/)  \/  -.  ( A  i^i  C )  =  (/) )
2 df-ima 5127 . . . . . . . 8  |-  ( ( A  X.  B )
" C )  =  ran  ( ( A  X.  B )  |`  C )
3 df-res 5126 . . . . . . . . 9  |-  ( ( A  X.  B )  |`  C )  =  ( ( A  X.  B
)  i^i  ( C  X.  _V ) )
43rneqi 5352 . . . . . . . 8  |-  ran  (
( A  X.  B
)  |`  C )  =  ran  ( ( A  X.  B )  i^i  ( C  X.  _V ) )
52, 4eqtri 2644 . . . . . . 7  |-  ( ( A  X.  B )
" C )  =  ran  ( ( A  X.  B )  i^i  ( C  X.  _V ) )
6 inxp 5254 . . . . . . . 8  |-  ( ( A  X.  B )  i^i  ( C  X.  _V ) )  =  ( ( A  i^i  C
)  X.  ( B  i^i  _V ) )
76rneqi 5352 . . . . . . 7  |-  ran  (
( A  X.  B
)  i^i  ( C  X.  _V ) )  =  ran  ( ( A  i^i  C )  X.  ( B  i^i  _V ) )
8 inv1 3970 . . . . . . . . 9  |-  ( B  i^i  _V )  =  B
98xpeq2i 5136 . . . . . . . 8  |-  ( ( A  i^i  C )  X.  ( B  i^i  _V ) )  =  ( ( A  i^i  C
)  X.  B )
109rneqi 5352 . . . . . . 7  |-  ran  (
( A  i^i  C
)  X.  ( B  i^i  _V ) )  =  ran  ( ( A  i^i  C )  X.  B )
115, 7, 103eqtri 2648 . . . . . 6  |-  ( ( A  X.  B )
" C )  =  ran  ( ( A  i^i  C )  X.  B )
12 xpeq1 5128 . . . . . . . . 9  |-  ( ( A  i^i  C )  =  (/)  ->  ( ( A  i^i  C )  X.  B )  =  ( (/)  X.  B
) )
13 0xp 5199 . . . . . . . . 9  |-  ( (/)  X.  B )  =  (/)
1412, 13syl6eq 2672 . . . . . . . 8  |-  ( ( A  i^i  C )  =  (/)  ->  ( ( A  i^i  C )  X.  B )  =  (/) )
1514rneqd 5353 . . . . . . 7  |-  ( ( A  i^i  C )  =  (/)  ->  ran  (
( A  i^i  C
)  X.  B )  =  ran  (/) )
16 rn0 5377 . . . . . . 7  |-  ran  (/)  =  (/)
1715, 16syl6eq 2672 . . . . . 6  |-  ( ( A  i^i  C )  =  (/)  ->  ran  (
( A  i^i  C
)  X.  B )  =  (/) )
1811, 17syl5eq 2668 . . . . 5  |-  ( ( A  i^i  C )  =  (/)  ->  ( ( A  X.  B )
" C )  =  (/) )
1918ancli 574 . . . 4  |-  ( ( A  i^i  C )  =  (/)  ->  ( ( A  i^i  C )  =  (/)  /\  (
( A  X.  B
) " C )  =  (/) ) )
20 df-ne 2795 . . . . . . 7  |-  ( ( A  i^i  C )  =/=  (/)  <->  -.  ( A  i^i  C )  =  (/) )
21 rnxp 5564 . . . . . . 7  |-  ( ( A  i^i  C )  =/=  (/)  ->  ran  ( ( A  i^i  C )  X.  B )  =  B )
2220, 21sylbir 225 . . . . . 6  |-  ( -.  ( A  i^i  C
)  =  (/)  ->  ran  ( ( A  i^i  C )  X.  B )  =  B )
2311, 22syl5eq 2668 . . . . 5  |-  ( -.  ( A  i^i  C
)  =  (/)  ->  (
( A  X.  B
) " C )  =  B )
2423ancli 574 . . . 4  |-  ( -.  ( A  i^i  C
)  =  (/)  ->  ( -.  ( A  i^i  C
)  =  (/)  /\  (
( A  X.  B
) " C )  =  B ) )
2519, 24orim12i 538 . . 3  |-  ( ( ( A  i^i  C
)  =  (/)  \/  -.  ( A  i^i  C )  =  (/) )  ->  (
( ( A  i^i  C )  =  (/)  /\  (
( A  X.  B
) " C )  =  (/) )  \/  ( -.  ( A  i^i  C
)  =  (/)  /\  (
( A  X.  B
) " C )  =  B ) ) )
261, 25ax-mp 5 . 2  |-  ( ( ( A  i^i  C
)  =  (/)  /\  (
( A  X.  B
) " C )  =  (/) )  \/  ( -.  ( A  i^i  C
)  =  (/)  /\  (
( A  X.  B
) " C )  =  B ) )
27 eqif 4126 . 2  |-  ( ( ( A  X.  B
) " C )  =  if ( ( A  i^i  C )  =  (/) ,  (/) ,  B
)  <->  ( ( ( A  i^i  C )  =  (/)  /\  (
( A  X.  B
) " C )  =  (/) )  \/  ( -.  ( A  i^i  C
)  =  (/)  /\  (
( A  X.  B
) " C )  =  B ) ) )
2826, 27mpbir 221 1  |-  ( ( A  X.  B )
" C )  =  if ( ( A  i^i  C )  =  (/) ,  (/) ,  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    \/ wo 383    /\ wa 384    = wceq 1483    =/= wne 2794   _Vcvv 3200    i^i cin 3573   (/)c0 3915   ifcif 4086    X. cxp 5112   ran crn 5115    |` cres 5116   "cima 5117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127
This theorem is referenced by:  xpima1  5577  xpima2  5578  imadifxp  29414  bj-xpimasn  32942
  Copyright terms: Public domain W3C validator