Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zerdivemp1x Structured version   Visualization version   GIF version

Theorem zerdivemp1x 33746
Description: In a unitary ring a left invertible element is not a zero divisor. See also ringinvnzdiv 18593. (Contributed by Jeff Madsen, 18-Apr-2010.)
Hypotheses
Ref Expression
zerdivempx.1 𝐺 = (1st𝑅)
zerdivempx.2 𝐻 = (2nd𝑅)
zerdivempx.3 𝑍 = (GId‘𝐺)
zerdivempx.4 𝑋 = ran 𝐺
zerdivempx.5 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
zerdivemp1x ((𝑅 ∈ RingOps ∧ 𝐴𝑋 ∧ ∃𝑎𝑋 (𝑎𝐻𝐴) = 𝑈) → (𝐵𝑋 → ((𝐴𝐻𝐵) = 𝑍𝐵 = 𝑍)))
Distinct variable groups:   𝐴,𝑎   𝐵,𝑎   𝐻,𝑎   𝑅,𝑎   𝑋,𝑎   𝑍,𝑎
Allowed substitution hints:   𝑈(𝑎)   𝐺(𝑎)

Proof of Theorem zerdivemp1x
StepHypRef Expression
1 oveq2 6658 . . . . . . 7 ((𝐴𝐻𝐵) = 𝑍 → (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍))
2 simpl1 1064 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵𝑋) ∧ (𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋)) → 𝑅 ∈ RingOps)
3 simpr1 1067 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵𝑋) ∧ (𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋)) → 𝑎𝑋)
4 simpr3 1069 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵𝑋) ∧ (𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋)) → 𝐴𝑋)
5 simpl3 1066 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵𝑋) ∧ (𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋)) → 𝐵𝑋)
6 zerdivempx.1 . . . . . . . . . . 11 𝐺 = (1st𝑅)
7 zerdivempx.2 . . . . . . . . . . 11 𝐻 = (2nd𝑅)
8 zerdivempx.4 . . . . . . . . . . 11 𝑋 = ran 𝐺
96, 7, 8rngoass 33705 . . . . . . . . . 10 ((𝑅 ∈ RingOps ∧ (𝑎𝑋𝐴𝑋𝐵𝑋)) → ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)))
102, 3, 4, 5, 9syl13anc 1328 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵𝑋) ∧ (𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋)) → ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)))
11 eqtr 2641 . . . . . . . . . . . . 13 ((((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)) ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍)) → ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍))
1211ex 450 . . . . . . . . . . . 12 (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)) → ((𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) → ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍)))
13 eqtr 2641 . . . . . . . . . . . . . . . . . . 19 (((𝑈𝐻𝐵) = ((𝑎𝐻𝐴)𝐻𝐵) ∧ ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍)) → (𝑈𝐻𝐵) = (𝑎𝐻𝑍))
14 zerdivempx.3 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑍 = (GId‘𝐺)
1514, 8, 6, 7rngorz 33722 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 ∈ RingOps ∧ 𝑎𝑋) → (𝑎𝐻𝑍) = 𝑍)
16153adant3 1081 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ RingOps ∧ 𝑎𝑋𝐵𝑋) → (𝑎𝐻𝑍) = 𝑍)
176rneqi 5352 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ran 𝐺 = ran (1st𝑅)
188, 17eqtri 2644 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑋 = ran (1st𝑅)
19 zerdivempx.5 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑈 = (GId‘𝐻)
207, 18, 19rngolidm 33736 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 ∈ RingOps ∧ 𝐵𝑋) → (𝑈𝐻𝐵) = 𝐵)
21203adant2 1080 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ RingOps ∧ 𝑎𝑋𝐵𝑋) → (𝑈𝐻𝐵) = 𝐵)
22 simp1 1061 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑈𝐻𝐵) = (𝑎𝐻𝑍) ∧ (𝑈𝐻𝐵) = 𝐵 ∧ (𝑎𝐻𝑍) = 𝑍) → (𝑈𝐻𝐵) = (𝑎𝐻𝑍))
23 simp2 1062 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑈𝐻𝐵) = (𝑎𝐻𝑍) ∧ (𝑈𝐻𝐵) = 𝐵 ∧ (𝑎𝐻𝑍) = 𝑍) → (𝑈𝐻𝐵) = 𝐵)
24 simp3 1063 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑈𝐻𝐵) = (𝑎𝐻𝑍) ∧ (𝑈𝐻𝐵) = 𝐵 ∧ (𝑎𝐻𝑍) = 𝑍) → (𝑎𝐻𝑍) = 𝑍)
2522, 23, 243eqtr3d 2664 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑈𝐻𝐵) = (𝑎𝐻𝑍) ∧ (𝑈𝐻𝐵) = 𝐵 ∧ (𝑎𝐻𝑍) = 𝑍) → 𝐵 = 𝑍)
2625a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑈𝐻𝐵) = (𝑎𝐻𝑍) ∧ (𝑈𝐻𝐵) = 𝐵 ∧ (𝑎𝐻𝑍) = 𝑍) → (𝐴𝑋𝐵 = 𝑍))
27263exp 1264 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → ((𝑈𝐻𝐵) = 𝐵 → ((𝑎𝐻𝑍) = 𝑍 → (𝐴𝑋𝐵 = 𝑍))))
2827com14 96 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴𝑋 → ((𝑈𝐻𝐵) = 𝐵 → ((𝑎𝐻𝑍) = 𝑍 → ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → 𝐵 = 𝑍))))
2928com13 88 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎𝐻𝑍) = 𝑍 → ((𝑈𝐻𝐵) = 𝐵 → (𝐴𝑋 → ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → 𝐵 = 𝑍))))
3016, 21, 29sylc 65 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ RingOps ∧ 𝑎𝑋𝐵𝑋) → (𝐴𝑋 → ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → 𝐵 = 𝑍)))
31303exp 1264 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ RingOps → (𝑎𝑋 → (𝐵𝑋 → (𝐴𝑋 → ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → 𝐵 = 𝑍)))))
3231com15 101 . . . . . . . . . . . . . . . . . . . 20 ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → (𝑎𝑋 → (𝐵𝑋 → (𝐴𝑋 → (𝑅 ∈ RingOps → 𝐵 = 𝑍)))))
3332com24 95 . . . . . . . . . . . . . . . . . . 19 ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → (𝐴𝑋 → (𝐵𝑋 → (𝑎𝑋 → (𝑅 ∈ RingOps → 𝐵 = 𝑍)))))
3413, 33syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑈𝐻𝐵) = ((𝑎𝐻𝐴)𝐻𝐵) ∧ ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍)) → (𝐴𝑋 → (𝐵𝑋 → (𝑎𝑋 → (𝑅 ∈ RingOps → 𝐵 = 𝑍)))))
3534ex 450 . . . . . . . . . . . . . . . . 17 ((𝑈𝐻𝐵) = ((𝑎𝐻𝐴)𝐻𝐵) → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝐴𝑋 → (𝐵𝑋 → (𝑎𝑋 → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))))
3635eqcoms 2630 . . . . . . . . . . . . . . . 16 (((𝑎𝐻𝐴)𝐻𝐵) = (𝑈𝐻𝐵) → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝐴𝑋 → (𝐵𝑋 → (𝑎𝑋 → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))))
3736com25 99 . . . . . . . . . . . . . . 15 (((𝑎𝐻𝐴)𝐻𝐵) = (𝑈𝐻𝐵) → (𝑎𝑋 → (𝐴𝑋 → (𝐵𝑋 → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))))
38 oveq1 6657 . . . . . . . . . . . . . . 15 ((𝑎𝐻𝐴) = 𝑈 → ((𝑎𝐻𝐴)𝐻𝐵) = (𝑈𝐻𝐵))
3937, 38syl11 33 . . . . . . . . . . . . . 14 (𝑎𝑋 → ((𝑎𝐻𝐴) = 𝑈 → (𝐴𝑋 → (𝐵𝑋 → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))))
40393imp 1256 . . . . . . . . . . . . 13 ((𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋) → (𝐵𝑋 → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))
4140com13 88 . . . . . . . . . . . 12 (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝐵𝑋 → ((𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋) → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))
4212, 41syl6 35 . . . . . . . . . . 11 (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)) → ((𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) → (𝐵𝑋 → ((𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋) → (𝑅 ∈ RingOps → 𝐵 = 𝑍)))))
4342com15 101 . . . . . . . . . 10 (𝑅 ∈ RingOps → ((𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) → (𝐵𝑋 → ((𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋) → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)) → 𝐵 = 𝑍)))))
44433imp1 1280 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵𝑋) ∧ (𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋)) → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)) → 𝐵 = 𝑍))
4510, 44mpd 15 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵𝑋) ∧ (𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋)) → 𝐵 = 𝑍)
46453exp1 1283 . . . . . . 7 (𝑅 ∈ RingOps → ((𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) → (𝐵𝑋 → ((𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋) → 𝐵 = 𝑍))))
471, 46syl5com 31 . . . . . 6 ((𝐴𝐻𝐵) = 𝑍 → (𝑅 ∈ RingOps → (𝐵𝑋 → ((𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋) → 𝐵 = 𝑍))))
4847com14 96 . . . . 5 ((𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋) → (𝑅 ∈ RingOps → (𝐵𝑋 → ((𝐴𝐻𝐵) = 𝑍𝐵 = 𝑍))))
49483exp 1264 . . . 4 (𝑎𝑋 → ((𝑎𝐻𝐴) = 𝑈 → (𝐴𝑋 → (𝑅 ∈ RingOps → (𝐵𝑋 → ((𝐴𝐻𝐵) = 𝑍𝐵 = 𝑍))))))
5049rexlimiv 3027 . . 3 (∃𝑎𝑋 (𝑎𝐻𝐴) = 𝑈 → (𝐴𝑋 → (𝑅 ∈ RingOps → (𝐵𝑋 → ((𝐴𝐻𝐵) = 𝑍𝐵 = 𝑍)))))
5150com13 88 . 2 (𝑅 ∈ RingOps → (𝐴𝑋 → (∃𝑎𝑋 (𝑎𝐻𝐴) = 𝑈 → (𝐵𝑋 → ((𝐴𝐻𝐵) = 𝑍𝐵 = 𝑍)))))
52513imp 1256 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋 ∧ ∃𝑎𝑋 (𝑎𝐻𝐴) = 𝑈) → (𝐵𝑋 → ((𝐴𝐻𝐵) = 𝑍𝐵 = 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  ran crn 5115  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  GIdcgi 27344  RingOpscrngo 33693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-riota 6611  df-ov 6653  df-1st 7168  df-2nd 7169  df-grpo 27347  df-gid 27348  df-ablo 27399  df-ass 33642  df-exid 33644  df-mgmOLD 33648  df-sgrOLD 33660  df-mndo 33666  df-rngo 33694
This theorem is referenced by:  isdrngo2  33757
  Copyright terms: Public domain W3C validator