Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zerdivemp1x Structured version   Visualization version   Unicode version

Theorem zerdivemp1x 33746
Description: In a unitary ring a left invertible element is not a zero divisor. See also ringinvnzdiv 18593. (Contributed by Jeff Madsen, 18-Apr-2010.)
Hypotheses
Ref Expression
zerdivempx.1  |-  G  =  ( 1st `  R
)
zerdivempx.2  |-  H  =  ( 2nd `  R
)
zerdivempx.3  |-  Z  =  (GId `  G )
zerdivempx.4  |-  X  =  ran  G
zerdivempx.5  |-  U  =  (GId `  H )
Assertion
Ref Expression
zerdivemp1x  |-  ( ( R  e.  RingOps  /\  A  e.  X  /\  E. a  e.  X  ( a H A )  =  U )  ->  ( B  e.  X  ->  ( ( A H B )  =  Z  ->  B  =  Z ) ) )
Distinct variable groups:    A, a    B, a    H, a    R, a    X, a    Z, a
Allowed substitution hints:    U( a)    G( a)

Proof of Theorem zerdivemp1x
StepHypRef Expression
1 oveq2 6658 . . . . . . 7  |-  ( ( A H B )  =  Z  ->  (
a H ( A H B ) )  =  ( a H Z ) )
2 simpl1 1064 . . . . . . . . . 10  |-  ( ( ( R  e.  RingOps  /\  ( a H ( A H B ) )  =  ( a H Z )  /\  B  e.  X )  /\  ( a  e.  X  /\  ( a H A )  =  U  /\  A  e.  X )
)  ->  R  e.  RingOps )
3 simpr1 1067 . . . . . . . . . 10  |-  ( ( ( R  e.  RingOps  /\  ( a H ( A H B ) )  =  ( a H Z )  /\  B  e.  X )  /\  ( a  e.  X  /\  ( a H A )  =  U  /\  A  e.  X )
)  ->  a  e.  X )
4 simpr3 1069 . . . . . . . . . 10  |-  ( ( ( R  e.  RingOps  /\  ( a H ( A H B ) )  =  ( a H Z )  /\  B  e.  X )  /\  ( a  e.  X  /\  ( a H A )  =  U  /\  A  e.  X )
)  ->  A  e.  X )
5 simpl3 1066 . . . . . . . . . 10  |-  ( ( ( R  e.  RingOps  /\  ( a H ( A H B ) )  =  ( a H Z )  /\  B  e.  X )  /\  ( a  e.  X  /\  ( a H A )  =  U  /\  A  e.  X )
)  ->  B  e.  X )
6 zerdivempx.1 . . . . . . . . . . 11  |-  G  =  ( 1st `  R
)
7 zerdivempx.2 . . . . . . . . . . 11  |-  H  =  ( 2nd `  R
)
8 zerdivempx.4 . . . . . . . . . . 11  |-  X  =  ran  G
96, 7, 8rngoass 33705 . . . . . . . . . 10  |-  ( ( R  e.  RingOps  /\  (
a  e.  X  /\  A  e.  X  /\  B  e.  X )
)  ->  ( (
a H A ) H B )  =  ( a H ( A H B ) ) )
102, 3, 4, 5, 9syl13anc 1328 . . . . . . . . 9  |-  ( ( ( R  e.  RingOps  /\  ( a H ( A H B ) )  =  ( a H Z )  /\  B  e.  X )  /\  ( a  e.  X  /\  ( a H A )  =  U  /\  A  e.  X )
)  ->  ( (
a H A ) H B )  =  ( a H ( A H B ) ) )
11 eqtr 2641 . . . . . . . . . . . . 13  |-  ( ( ( ( a H A ) H B )  =  ( a H ( A H B ) )  /\  ( a H ( A H B ) )  =  ( a H Z ) )  ->  ( ( a H A ) H B )  =  ( a H Z ) )
1211ex 450 . . . . . . . . . . . 12  |-  ( ( ( a H A ) H B )  =  ( a H ( A H B ) )  ->  (
( a H ( A H B ) )  =  ( a H Z )  -> 
( ( a H A ) H B )  =  ( a H Z ) ) )
13 eqtr 2641 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( U H B )  =  ( ( a H A ) H B )  /\  ( ( a H A ) H B )  =  ( a H Z ) )  ->  ( U H B )  =  ( a H Z ) )
14 zerdivempx.3 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  Z  =  (GId `  G )
1514, 8, 6, 7rngorz 33722 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( R  e.  RingOps  /\  a  e.  X )  ->  (
a H Z )  =  Z )
16153adant3 1081 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( R  e.  RingOps  /\  a  e.  X  /\  B  e.  X )  ->  (
a H Z )  =  Z )
176rneqi 5352 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ran  G  =  ran  ( 1st `  R
)
188, 17eqtri 2644 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  X  =  ran  ( 1st `  R
)
19 zerdivempx.5 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  U  =  (GId `  H )
207, 18, 19rngolidm 33736 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( R  e.  RingOps  /\  B  e.  X )  ->  ( U H B )  =  B )
21203adant2 1080 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( R  e.  RingOps  /\  a  e.  X  /\  B  e.  X )  ->  ( U H B )  =  B )
22 simp1 1061 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( U H B )  =  ( a H Z )  /\  ( U H B )  =  B  /\  (
a H Z )  =  Z )  -> 
( U H B )  =  ( a H Z ) )
23 simp2 1062 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( U H B )  =  ( a H Z )  /\  ( U H B )  =  B  /\  (
a H Z )  =  Z )  -> 
( U H B )  =  B )
24 simp3 1063 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( U H B )  =  ( a H Z )  /\  ( U H B )  =  B  /\  (
a H Z )  =  Z )  -> 
( a H Z )  =  Z )
2522, 23, 243eqtr3d 2664 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( U H B )  =  ( a H Z )  /\  ( U H B )  =  B  /\  (
a H Z )  =  Z )  ->  B  =  Z )
2625a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( U H B )  =  ( a H Z )  /\  ( U H B )  =  B  /\  (
a H Z )  =  Z )  -> 
( A  e.  X  ->  B  =  Z ) )
27263exp 1264 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( U H B )  =  ( a H Z )  ->  (
( U H B )  =  B  -> 
( ( a H Z )  =  Z  ->  ( A  e.  X  ->  B  =  Z ) ) ) )
2827com14 96 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( A  e.  X  ->  (
( U H B )  =  B  -> 
( ( a H Z )  =  Z  ->  ( ( U H B )  =  ( a H Z )  ->  B  =  Z ) ) ) )
2928com13 88 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( a H Z )  =  Z  ->  (
( U H B )  =  B  -> 
( A  e.  X  ->  ( ( U H B )  =  ( a H Z )  ->  B  =  Z ) ) ) )
3016, 21, 29sylc 65 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  e.  RingOps  /\  a  e.  X  /\  B  e.  X )  ->  ( A  e.  X  ->  ( ( U H B )  =  ( a H Z )  ->  B  =  Z )
) )
31303exp 1264 . . . . . . . . . . . . . . . . . . . . 21  |-  ( R  e.  RingOps  ->  ( a  e.  X  ->  ( B  e.  X  ->  ( A  e.  X  ->  (
( U H B )  =  ( a H Z )  ->  B  =  Z )
) ) ) )
3231com15 101 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( U H B )  =  ( a H Z )  ->  (
a  e.  X  -> 
( B  e.  X  ->  ( A  e.  X  ->  ( R  e.  RingOps  ->  B  =  Z )
) ) ) )
3332com24 95 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U H B )  =  ( a H Z )  ->  ( A  e.  X  ->  ( B  e.  X  -> 
( a  e.  X  ->  ( R  e.  RingOps  ->  B  =  Z )
) ) ) )
3413, 33syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( U H B )  =  ( ( a H A ) H B )  /\  ( ( a H A ) H B )  =  ( a H Z ) )  ->  ( A  e.  X  ->  ( B  e.  X  ->  ( a  e.  X  ->  ( R  e.  RingOps  ->  B  =  Z ) ) ) ) )
3534ex 450 . . . . . . . . . . . . . . . . 17  |-  ( ( U H B )  =  ( ( a H A ) H B )  ->  (
( ( a H A ) H B )  =  ( a H Z )  -> 
( A  e.  X  ->  ( B  e.  X  ->  ( a  e.  X  ->  ( R  e.  RingOps  ->  B  =  Z )
) ) ) ) )
3635eqcoms 2630 . . . . . . . . . . . . . . . 16  |-  ( ( ( a H A ) H B )  =  ( U H B )  ->  (
( ( a H A ) H B )  =  ( a H Z )  -> 
( A  e.  X  ->  ( B  e.  X  ->  ( a  e.  X  ->  ( R  e.  RingOps  ->  B  =  Z )
) ) ) ) )
3736com25 99 . . . . . . . . . . . . . . 15  |-  ( ( ( a H A ) H B )  =  ( U H B )  ->  (
a  e.  X  -> 
( A  e.  X  ->  ( B  e.  X  ->  ( ( ( a H A ) H B )  =  ( a H Z )  ->  ( R  e.  RingOps 
->  B  =  Z
) ) ) ) ) )
38 oveq1 6657 . . . . . . . . . . . . . . 15  |-  ( ( a H A )  =  U  ->  (
( a H A ) H B )  =  ( U H B ) )
3937, 38syl11 33 . . . . . . . . . . . . . 14  |-  ( a  e.  X  ->  (
( a H A )  =  U  -> 
( A  e.  X  ->  ( B  e.  X  ->  ( ( ( a H A ) H B )  =  ( a H Z )  ->  ( R  e.  RingOps 
->  B  =  Z
) ) ) ) ) )
40393imp 1256 . . . . . . . . . . . . 13  |-  ( ( a  e.  X  /\  ( a H A )  =  U  /\  A  e.  X )  ->  ( B  e.  X  ->  ( ( ( a H A ) H B )  =  ( a H Z )  ->  ( R  e.  RingOps 
->  B  =  Z
) ) ) )
4140com13 88 . . . . . . . . . . . 12  |-  ( ( ( a H A ) H B )  =  ( a H Z )  ->  ( B  e.  X  ->  ( ( a  e.  X  /\  ( a H A )  =  U  /\  A  e.  X )  ->  ( R  e.  RingOps  ->  B  =  Z )
) ) )
4212, 41syl6 35 . . . . . . . . . . 11  |-  ( ( ( a H A ) H B )  =  ( a H ( A H B ) )  ->  (
( a H ( A H B ) )  =  ( a H Z )  -> 
( B  e.  X  ->  ( ( a  e.  X  /\  ( a H A )  =  U  /\  A  e.  X )  ->  ( R  e.  RingOps  ->  B  =  Z ) ) ) ) )
4342com15 101 . . . . . . . . . 10  |-  ( R  e.  RingOps  ->  ( ( a H ( A H B ) )  =  ( a H Z )  ->  ( B  e.  X  ->  ( ( a  e.  X  /\  ( a H A )  =  U  /\  A  e.  X )  ->  ( ( ( a H A ) H B )  =  ( a H ( A H B ) )  ->  B  =  Z ) ) ) ) )
44433imp1 1280 . . . . . . . . 9  |-  ( ( ( R  e.  RingOps  /\  ( a H ( A H B ) )  =  ( a H Z )  /\  B  e.  X )  /\  ( a  e.  X  /\  ( a H A )  =  U  /\  A  e.  X )
)  ->  ( (
( a H A ) H B )  =  ( a H ( A H B ) )  ->  B  =  Z ) )
4510, 44mpd 15 . . . . . . . 8  |-  ( ( ( R  e.  RingOps  /\  ( a H ( A H B ) )  =  ( a H Z )  /\  B  e.  X )  /\  ( a  e.  X  /\  ( a H A )  =  U  /\  A  e.  X )
)  ->  B  =  Z )
46453exp1 1283 . . . . . . 7  |-  ( R  e.  RingOps  ->  ( ( a H ( A H B ) )  =  ( a H Z )  ->  ( B  e.  X  ->  ( ( a  e.  X  /\  ( a H A )  =  U  /\  A  e.  X )  ->  B  =  Z ) ) ) )
471, 46syl5com 31 . . . . . 6  |-  ( ( A H B )  =  Z  ->  ( R  e.  RingOps  ->  ( B  e.  X  ->  ( ( a  e.  X  /\  ( a H A )  =  U  /\  A  e.  X )  ->  B  =  Z ) ) ) )
4847com14 96 . . . . 5  |-  ( ( a  e.  X  /\  ( a H A )  =  U  /\  A  e.  X )  ->  ( R  e.  RingOps  -> 
( B  e.  X  ->  ( ( A H B )  =  Z  ->  B  =  Z ) ) ) )
49483exp 1264 . . . 4  |-  ( a  e.  X  ->  (
( a H A )  =  U  -> 
( A  e.  X  ->  ( R  e.  RingOps  -> 
( B  e.  X  ->  ( ( A H B )  =  Z  ->  B  =  Z ) ) ) ) ) )
5049rexlimiv 3027 . . 3  |-  ( E. a  e.  X  ( a H A )  =  U  ->  ( A  e.  X  ->  ( R  e.  RingOps  ->  ( B  e.  X  ->  ( ( A H B )  =  Z  ->  B  =  Z )
) ) ) )
5150com13 88 . 2  |-  ( R  e.  RingOps  ->  ( A  e.  X  ->  ( E. a  e.  X  (
a H A )  =  U  ->  ( B  e.  X  ->  ( ( A H B )  =  Z  ->  B  =  Z )
) ) ) )
52513imp 1256 1  |-  ( ( R  e.  RingOps  /\  A  e.  X  /\  E. a  e.  X  ( a H A )  =  U )  ->  ( B  e.  X  ->  ( ( A H B )  =  Z  ->  B  =  Z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   ran crn 5115   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167  GIdcgi 27344   RingOpscrngo 33693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-riota 6611  df-ov 6653  df-1st 7168  df-2nd 7169  df-grpo 27347  df-gid 27348  df-ablo 27399  df-ass 33642  df-exid 33644  df-mgmOLD 33648  df-sgrOLD 33660  df-mndo 33666  df-rngo 33694
This theorem is referenced by:  isdrngo2  33757
  Copyright terms: Public domain W3C validator