Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
dma-mapping.c
Go to the documentation of this file.
1 /*
2  * linux/arch/arm/mm/dma-mapping.c
3  *
4  * Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * DMA uncached mapping support.
11  */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/dma-contiguous.h>
21 #include <linux/highmem.h>
22 #include <linux/memblock.h>
23 #include <linux/slab.h>
24 #include <linux/iommu.h>
25 #include <linux/io.h>
26 #include <linux/vmalloc.h>
27 #include <linux/sizes.h>
28 
29 #include <asm/memory.h>
30 #include <asm/highmem.h>
31 #include <asm/cacheflush.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mach/arch.h>
34 #include <asm/dma-iommu.h>
35 #include <asm/mach/map.h>
36 #include <asm/system_info.h>
37 #include <asm/dma-contiguous.h>
38 
39 #include "mm.h"
40 
41 /*
42  * The DMA API is built upon the notion of "buffer ownership". A buffer
43  * is either exclusively owned by the CPU (and therefore may be accessed
44  * by it) or exclusively owned by the DMA device. These helper functions
45  * represent the transitions between these two ownership states.
46  *
47  * Note, however, that on later ARMs, this notion does not work due to
48  * speculative prefetches. We model our approach on the assumption that
49  * the CPU does do speculative prefetches, which means we clean caches
50  * before transfers and delay cache invalidation until transfer completion.
51  *
52  */
53 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
54  size_t, enum dma_data_direction);
55 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
56  size_t, enum dma_data_direction);
57 
72 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
73  unsigned long offset, size_t size, enum dma_data_direction dir,
74  struct dma_attrs *attrs)
75 {
76  if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
77  __dma_page_cpu_to_dev(page, offset, size, dir);
78  return pfn_to_dma(dev, page_to_pfn(page)) + offset;
79 }
80 
81 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
82  unsigned long offset, size_t size, enum dma_data_direction dir,
83  struct dma_attrs *attrs)
84 {
85  return pfn_to_dma(dev, page_to_pfn(page)) + offset;
86 }
87 
102 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
103  size_t size, enum dma_data_direction dir,
104  struct dma_attrs *attrs)
105 {
106  if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
107  __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
108  handle & ~PAGE_MASK, size, dir);
109 }
110 
111 static void arm_dma_sync_single_for_cpu(struct device *dev,
112  dma_addr_t handle, size_t size, enum dma_data_direction dir)
113 {
114  unsigned int offset = handle & (PAGE_SIZE - 1);
115  struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
116  __dma_page_dev_to_cpu(page, offset, size, dir);
117 }
118 
119 static void arm_dma_sync_single_for_device(struct device *dev,
120  dma_addr_t handle, size_t size, enum dma_data_direction dir)
121 {
122  unsigned int offset = handle & (PAGE_SIZE - 1);
123  struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
124  __dma_page_cpu_to_dev(page, offset, size, dir);
125 }
126 
127 static int arm_dma_set_mask(struct device *dev, u64 dma_mask);
128 
130  .alloc = arm_dma_alloc,
131  .free = arm_dma_free,
132  .mmap = arm_dma_mmap,
133  .get_sgtable = arm_dma_get_sgtable,
134  .map_page = arm_dma_map_page,
135  .unmap_page = arm_dma_unmap_page,
136  .map_sg = arm_dma_map_sg,
137  .unmap_sg = arm_dma_unmap_sg,
138  .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
139  .sync_single_for_device = arm_dma_sync_single_for_device,
140  .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
141  .sync_sg_for_device = arm_dma_sync_sg_for_device,
142  .set_dma_mask = arm_dma_set_mask,
143 };
144 EXPORT_SYMBOL(arm_dma_ops);
145 
146 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
147  dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
148 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
149  dma_addr_t handle, struct dma_attrs *attrs);
150 
152  .alloc = arm_coherent_dma_alloc,
153  .free = arm_coherent_dma_free,
154  .mmap = arm_dma_mmap,
155  .get_sgtable = arm_dma_get_sgtable,
156  .map_page = arm_coherent_dma_map_page,
157  .map_sg = arm_dma_map_sg,
158  .set_dma_mask = arm_dma_set_mask,
159 };
160 EXPORT_SYMBOL(arm_coherent_dma_ops);
161 
162 static u64 get_coherent_dma_mask(struct device *dev)
163 {
165 
166  if (dev) {
167  mask = dev->coherent_dma_mask;
168 
169  /*
170  * Sanity check the DMA mask - it must be non-zero, and
171  * must be able to be satisfied by a DMA allocation.
172  */
173  if (mask == 0) {
174  dev_warn(dev, "coherent DMA mask is unset\n");
175  return 0;
176  }
177 
178  if ((~mask) & (u64)arm_dma_limit) {
179  dev_warn(dev, "coherent DMA mask %#llx is smaller "
180  "than system GFP_DMA mask %#llx\n",
181  mask, (u64)arm_dma_limit);
182  return 0;
183  }
184  }
185 
186  return mask;
187 }
188 
189 static void __dma_clear_buffer(struct page *page, size_t size)
190 {
191  void *ptr;
192  /*
193  * Ensure that the allocated pages are zeroed, and that any data
194  * lurking in the kernel direct-mapped region is invalidated.
195  */
196  ptr = page_address(page);
197  if (ptr) {
198  memset(ptr, 0, size);
199  dmac_flush_range(ptr, ptr + size);
200  outer_flush_range(__pa(ptr), __pa(ptr) + size);
201  }
202 }
203 
204 /*
205  * Allocate a DMA buffer for 'dev' of size 'size' using the
206  * specified gfp mask. Note that 'size' must be page aligned.
207  */
208 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
209 {
210  unsigned long order = get_order(size);
211  struct page *page, *p, *e;
212 
213  page = alloc_pages(gfp, order);
214  if (!page)
215  return NULL;
216 
217  /*
218  * Now split the huge page and free the excess pages
219  */
220  split_page(page, order);
221  for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
222  __free_page(p);
223 
224  __dma_clear_buffer(page, size);
225 
226  return page;
227 }
228 
229 /*
230  * Free a DMA buffer. 'size' must be page aligned.
231  */
232 static void __dma_free_buffer(struct page *page, size_t size)
233 {
234  struct page *e = page + (size >> PAGE_SHIFT);
235 
236  while (page < e) {
237  __free_page(page);
238  page++;
239  }
240 }
241 
242 #ifdef CONFIG_MMU
243 #ifdef CONFIG_HUGETLB_PAGE
244 #error ARM Coherent DMA allocator does not (yet) support huge TLB
245 #endif
246 
247 static void *__alloc_from_contiguous(struct device *dev, size_t size,
248  pgprot_t prot, struct page **ret_page);
249 
250 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
251  pgprot_t prot, struct page **ret_page,
252  const void *caller);
253 
254 static void *
255 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
256  const void *caller)
257 {
258  struct vm_struct *area;
259  unsigned long addr;
260 
261  /*
262  * DMA allocation can be mapped to user space, so lets
263  * set VM_USERMAP flags too.
264  */
265  area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
266  caller);
267  if (!area)
268  return NULL;
269  addr = (unsigned long)area->addr;
270  area->phys_addr = __pfn_to_phys(page_to_pfn(page));
271 
272  if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
273  vunmap((void *)addr);
274  return NULL;
275  }
276  return (void *)addr;
277 }
278 
279 static void __dma_free_remap(void *cpu_addr, size_t size)
280 {
281  unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
282  struct vm_struct *area = find_vm_area(cpu_addr);
283  if (!area || (area->flags & flags) != flags) {
284  WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
285  return;
286  }
287  unmap_kernel_range((unsigned long)cpu_addr, size);
288  vunmap(cpu_addr);
289 }
290 
291 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
292 
293 struct dma_pool {
294  size_t size;
296  unsigned long *bitmap;
297  unsigned long nr_pages;
298  void *vaddr;
299  struct page **pages;
300 };
301 
302 static struct dma_pool atomic_pool = {
303  .size = DEFAULT_DMA_COHERENT_POOL_SIZE,
304 };
305 
306 static int __init early_coherent_pool(char *p)
307 {
308  atomic_pool.size = memparse(p, &p);
309  return 0;
310 }
311 early_param("coherent_pool", early_coherent_pool);
312 
313 void __init init_dma_coherent_pool_size(unsigned long size)
314 {
315  /*
316  * Catch any attempt to set the pool size too late.
317  */
318  BUG_ON(atomic_pool.vaddr);
319 
320  /*
321  * Set architecture specific coherent pool size only if
322  * it has not been changed by kernel command line parameter.
323  */
324  if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
325  atomic_pool.size = size;
326 }
327 
328 /*
329  * Initialise the coherent pool for atomic allocations.
330  */
331 static int __init atomic_pool_init(void)
332 {
333  struct dma_pool *pool = &atomic_pool;
335  unsigned long nr_pages = pool->size >> PAGE_SHIFT;
336  unsigned long *bitmap;
337  struct page *page;
338  struct page **pages;
339  void *ptr;
340  int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
341 
342  bitmap = kzalloc(bitmap_size, GFP_KERNEL);
343  if (!bitmap)
344  goto no_bitmap;
345 
346  pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
347  if (!pages)
348  goto no_pages;
349 
350  if (IS_ENABLED(CONFIG_CMA))
351  ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page);
352  else
353  ptr = __alloc_remap_buffer(NULL, pool->size, GFP_KERNEL, prot,
354  &page, NULL);
355  if (ptr) {
356  int i;
357 
358  for (i = 0; i < nr_pages; i++)
359  pages[i] = page + i;
360 
361  spin_lock_init(&pool->lock);
362  pool->vaddr = ptr;
363  pool->pages = pages;
364  pool->bitmap = bitmap;
365  pool->nr_pages = nr_pages;
366  pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
367  (unsigned)pool->size / 1024);
368  return 0;
369  }
370 
371  kfree(pages);
372 no_pages:
373  kfree(bitmap);
374 no_bitmap:
375  pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
376  (unsigned)pool->size / 1024);
377  return -ENOMEM;
378 }
379 /*
380  * CMA is activated by core_initcall, so we must be called after it.
381  */
382 postcore_initcall(atomic_pool_init);
383 
384 struct dma_contig_early_reserve {
386  unsigned long size;
387 };
388 
389 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
390 
391 static int dma_mmu_remap_num __initdata;
392 
393 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
394 {
395  dma_mmu_remap[dma_mmu_remap_num].base = base;
396  dma_mmu_remap[dma_mmu_remap_num].size = size;
397  dma_mmu_remap_num++;
398 }
399 
400 void __init dma_contiguous_remap(void)
401 {
402  int i;
403  for (i = 0; i < dma_mmu_remap_num; i++) {
404  phys_addr_t start = dma_mmu_remap[i].base;
405  phys_addr_t end = start + dma_mmu_remap[i].size;
406  struct map_desc map;
407  unsigned long addr;
408 
409  if (end > arm_lowmem_limit)
410  end = arm_lowmem_limit;
411  if (start >= end)
412  continue;
413 
414  map.pfn = __phys_to_pfn(start);
415  map.virtual = __phys_to_virt(start);
416  map.length = end - start;
418 
419  /*
420  * Clear previous low-memory mapping
421  */
422  for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
423  addr += PMD_SIZE)
424  pmd_clear(pmd_off_k(addr));
425 
426  iotable_init(&map, 1);
427  }
428 }
429 
430 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
431  void *data)
432 {
433  struct page *page = virt_to_page(addr);
434  pgprot_t prot = *(pgprot_t *)data;
435 
436  set_pte_ext(pte, mk_pte(page, prot), 0);
437  return 0;
438 }
439 
440 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
441 {
442  unsigned long start = (unsigned long) page_address(page);
443  unsigned end = start + size;
444 
445  apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
446  dsb();
447  flush_tlb_kernel_range(start, end);
448 }
449 
450 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
451  pgprot_t prot, struct page **ret_page,
452  const void *caller)
453 {
454  struct page *page;
455  void *ptr;
456  page = __dma_alloc_buffer(dev, size, gfp);
457  if (!page)
458  return NULL;
459 
460  ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
461  if (!ptr) {
462  __dma_free_buffer(page, size);
463  return NULL;
464  }
465 
466  *ret_page = page;
467  return ptr;
468 }
469 
470 static void *__alloc_from_pool(size_t size, struct page **ret_page)
471 {
472  struct dma_pool *pool = &atomic_pool;
473  unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
474  unsigned int pageno;
475  unsigned long flags;
476  void *ptr = NULL;
477  unsigned long align_mask;
478 
479  if (!pool->vaddr) {
480  WARN(1, "coherent pool not initialised!\n");
481  return NULL;
482  }
483 
484  /*
485  * Align the region allocation - allocations from pool are rather
486  * small, so align them to their order in pages, minimum is a page
487  * size. This helps reduce fragmentation of the DMA space.
488  */
489  align_mask = (1 << get_order(size)) - 1;
490 
491  spin_lock_irqsave(&pool->lock, flags);
492  pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
493  0, count, align_mask);
494  if (pageno < pool->nr_pages) {
495  bitmap_set(pool->bitmap, pageno, count);
496  ptr = pool->vaddr + PAGE_SIZE * pageno;
497  *ret_page = pool->pages[pageno];
498  } else {
499  pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
500  "Please increase it with coherent_pool= kernel parameter!\n",
501  (unsigned)pool->size / 1024);
502  }
503  spin_unlock_irqrestore(&pool->lock, flags);
504 
505  return ptr;
506 }
507 
508 static bool __in_atomic_pool(void *start, size_t size)
509 {
510  struct dma_pool *pool = &atomic_pool;
511  void *end = start + size;
512  void *pool_start = pool->vaddr;
513  void *pool_end = pool->vaddr + pool->size;
514 
515  if (start < pool_start || start >= pool_end)
516  return false;
517 
518  if (end <= pool_end)
519  return true;
520 
521  WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
522  start, end - 1, pool_start, pool_end - 1);
523 
524  return false;
525 }
526 
527 static int __free_from_pool(void *start, size_t size)
528 {
529  struct dma_pool *pool = &atomic_pool;
530  unsigned long pageno, count;
531  unsigned long flags;
532 
533  if (!__in_atomic_pool(start, size))
534  return 0;
535 
536  pageno = (start - pool->vaddr) >> PAGE_SHIFT;
537  count = size >> PAGE_SHIFT;
538 
539  spin_lock_irqsave(&pool->lock, flags);
540  bitmap_clear(pool->bitmap, pageno, count);
541  spin_unlock_irqrestore(&pool->lock, flags);
542 
543  return 1;
544 }
545 
546 static void *__alloc_from_contiguous(struct device *dev, size_t size,
547  pgprot_t prot, struct page **ret_page)
548 {
549  unsigned long order = get_order(size);
550  size_t count = size >> PAGE_SHIFT;
551  struct page *page;
552 
553  page = dma_alloc_from_contiguous(dev, count, order);
554  if (!page)
555  return NULL;
556 
557  __dma_clear_buffer(page, size);
558  __dma_remap(page, size, prot);
559 
560  *ret_page = page;
561  return page_address(page);
562 }
563 
564 static void __free_from_contiguous(struct device *dev, struct page *page,
565  size_t size)
566 {
567  __dma_remap(page, size, pgprot_kernel);
568  dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
569 }
570 
571 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
572 {
573  prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
574  pgprot_writecombine(prot) :
575  pgprot_dmacoherent(prot);
576  return prot;
577 }
578 
579 #define nommu() 0
580 
581 #else /* !CONFIG_MMU */
582 
583 #define nommu() 1
584 
585 #define __get_dma_pgprot(attrs, prot) __pgprot(0)
586 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
587 #define __alloc_from_pool(size, ret_page) NULL
588 #define __alloc_from_contiguous(dev, size, prot, ret) NULL
589 #define __free_from_pool(cpu_addr, size) 0
590 #define __free_from_contiguous(dev, page, size) do { } while (0)
591 #define __dma_free_remap(cpu_addr, size) do { } while (0)
592 
593 #endif /* CONFIG_MMU */
594 
595 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
596  struct page **ret_page)
597 {
598  struct page *page;
599  page = __dma_alloc_buffer(dev, size, gfp);
600  if (!page)
601  return NULL;
602 
603  *ret_page = page;
604  return page_address(page);
605 }
606 
607 
608 
609 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
610  gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
611 {
612  u64 mask = get_coherent_dma_mask(dev);
613  struct page *page = NULL;
614  void *addr;
615 
616 #ifdef CONFIG_DMA_API_DEBUG
617  u64 limit = (mask + 1) & ~mask;
618  if (limit && size >= limit) {
619  dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
620  size, mask);
621  return NULL;
622  }
623 #endif
624 
625  if (!mask)
626  return NULL;
627 
628  if (mask < 0xffffffffULL)
629  gfp |= GFP_DMA;
630 
631  /*
632  * Following is a work-around (a.k.a. hack) to prevent pages
633  * with __GFP_COMP being passed to split_page() which cannot
634  * handle them. The real problem is that this flag probably
635  * should be 0 on ARM as it is not supported on this
636  * platform; see CONFIG_HUGETLBFS.
637  */
638  gfp &= ~(__GFP_COMP);
639 
640  *handle = DMA_ERROR_CODE;
641  size = PAGE_ALIGN(size);
642 
643  if (is_coherent || nommu())
644  addr = __alloc_simple_buffer(dev, size, gfp, &page);
645  else if (gfp & GFP_ATOMIC)
646  addr = __alloc_from_pool(size, &page);
647  else if (!IS_ENABLED(CONFIG_CMA))
648  addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
649  else
650  addr = __alloc_from_contiguous(dev, size, prot, &page);
651 
652  if (addr)
653  *handle = pfn_to_dma(dev, page_to_pfn(page));
654 
655  return addr;
656 }
657 
658 /*
659  * Allocate DMA-coherent memory space and return both the kernel remapped
660  * virtual and bus address for that space.
661  */
662 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
663  gfp_t gfp, struct dma_attrs *attrs)
664 {
665  pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
666  void *memory;
667 
668  if (dma_alloc_from_coherent(dev, size, handle, &memory))
669  return memory;
670 
671  return __dma_alloc(dev, size, handle, gfp, prot, false,
672  __builtin_return_address(0));
673 }
674 
675 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
676  dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
677 {
678  pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
679  void *memory;
680 
681  if (dma_alloc_from_coherent(dev, size, handle, &memory))
682  return memory;
683 
684  return __dma_alloc(dev, size, handle, gfp, prot, true,
685  __builtin_return_address(0));
686 }
687 
688 /*
689  * Create userspace mapping for the DMA-coherent memory.
690  */
691 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
692  void *cpu_addr, dma_addr_t dma_addr, size_t size,
693  struct dma_attrs *attrs)
694 {
695  int ret = -ENXIO;
696 #ifdef CONFIG_MMU
697  unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
698  unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
699  unsigned long pfn = dma_to_pfn(dev, dma_addr);
700  unsigned long off = vma->vm_pgoff;
701 
702  vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
703 
704  if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
705  return ret;
706 
707  if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
708  ret = remap_pfn_range(vma, vma->vm_start,
709  pfn + off,
710  vma->vm_end - vma->vm_start,
711  vma->vm_page_prot);
712  }
713 #endif /* CONFIG_MMU */
714 
715  return ret;
716 }
717 
718 /*
719  * Free a buffer as defined by the above mapping.
720  */
721 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
722  dma_addr_t handle, struct dma_attrs *attrs,
723  bool is_coherent)
724 {
725  struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
726 
727  if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
728  return;
729 
730  size = PAGE_ALIGN(size);
731 
732  if (is_coherent || nommu()) {
733  __dma_free_buffer(page, size);
734  } else if (__free_from_pool(cpu_addr, size)) {
735  return;
736  } else if (!IS_ENABLED(CONFIG_CMA)) {
737  __dma_free_remap(cpu_addr, size);
738  __dma_free_buffer(page, size);
739  } else {
740  /*
741  * Non-atomic allocations cannot be freed with IRQs disabled
742  */
744  __free_from_contiguous(dev, page, size);
745  }
746 }
747 
748 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
749  dma_addr_t handle, struct dma_attrs *attrs)
750 {
751  __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
752 }
753 
754 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
755  dma_addr_t handle, struct dma_attrs *attrs)
756 {
757  __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
758 }
759 
760 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
761  void *cpu_addr, dma_addr_t handle, size_t size,
762  struct dma_attrs *attrs)
763 {
764  struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
765  int ret;
766 
767  ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
768  if (unlikely(ret))
769  return ret;
770 
771  sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
772  return 0;
773 }
774 
775 static void dma_cache_maint_page(struct page *page, unsigned long offset,
776  size_t size, enum dma_data_direction dir,
777  void (*op)(const void *, size_t, int))
778 {
779  /*
780  * A single sg entry may refer to multiple physically contiguous
781  * pages. But we still need to process highmem pages individually.
782  * If highmem is not configured then the bulk of this loop gets
783  * optimized out.
784  */
785  size_t left = size;
786  do {
787  size_t len = left;
788  void *vaddr;
789 
790  if (PageHighMem(page)) {
791  if (len + offset > PAGE_SIZE) {
792  if (offset >= PAGE_SIZE) {
793  page += offset / PAGE_SIZE;
794  offset %= PAGE_SIZE;
795  }
796  len = PAGE_SIZE - offset;
797  }
798  vaddr = kmap_high_get(page);
799  if (vaddr) {
800  vaddr += offset;
801  op(vaddr, len, dir);
802  kunmap_high(page);
803  } else if (cache_is_vipt()) {
804  /* unmapped pages might still be cached */
805  vaddr = kmap_atomic(page);
806  op(vaddr + offset, len, dir);
807  kunmap_atomic(vaddr);
808  }
809  } else {
810  vaddr = page_address(page) + offset;
811  op(vaddr, len, dir);
812  }
813  offset = 0;
814  page++;
815  left -= len;
816  } while (left);
817 }
818 
819 /*
820  * Make an area consistent for devices.
821  * Note: Drivers should NOT use this function directly, as it will break
822  * platforms with CONFIG_DMABOUNCE.
823  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
824  */
825 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
826  size_t size, enum dma_data_direction dir)
827 {
828  unsigned long paddr;
829 
830  dma_cache_maint_page(page, off, size, dir, dmac_map_area);
831 
832  paddr = page_to_phys(page) + off;
833  if (dir == DMA_FROM_DEVICE) {
834  outer_inv_range(paddr, paddr + size);
835  } else {
836  outer_clean_range(paddr, paddr + size);
837  }
838  /* FIXME: non-speculating: flush on bidirectional mappings? */
839 }
840 
841 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
842  size_t size, enum dma_data_direction dir)
843 {
844  unsigned long paddr = page_to_phys(page) + off;
845 
846  /* FIXME: non-speculating: not required */
847  /* don't bother invalidating if DMA to device */
848  if (dir != DMA_TO_DEVICE)
849  outer_inv_range(paddr, paddr + size);
850 
851  dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
852 
853  /*
854  * Mark the D-cache clean for this page to avoid extra flushing.
855  */
856  if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
857  set_bit(PG_dcache_clean, &page->flags);
858 }
859 
876 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
877  enum dma_data_direction dir, struct dma_attrs *attrs)
878 {
879  struct dma_map_ops *ops = get_dma_ops(dev);
880  struct scatterlist *s;
881  int i, j;
882 
883  for_each_sg(sg, s, nents, i) {
884 #ifdef CONFIG_NEED_SG_DMA_LENGTH
885  s->dma_length = s->length;
886 #endif
887  s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
888  s->length, dir, attrs);
889  if (dma_mapping_error(dev, s->dma_address))
890  goto bad_mapping;
891  }
892  return nents;
893 
894  bad_mapping:
895  for_each_sg(sg, s, i, j)
896  ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
897  return 0;
898 }
899 
910 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
911  enum dma_data_direction dir, struct dma_attrs *attrs)
912 {
913  struct dma_map_ops *ops = get_dma_ops(dev);
914  struct scatterlist *s;
915 
916  int i;
917 
918  for_each_sg(sg, s, nents, i)
919  ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
920 }
921 
929 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
930  int nents, enum dma_data_direction dir)
931 {
932  struct dma_map_ops *ops = get_dma_ops(dev);
933  struct scatterlist *s;
934  int i;
935 
936  for_each_sg(sg, s, nents, i)
937  ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
938  dir);
939 }
940 
949  int nents, enum dma_data_direction dir)
950 {
951  struct dma_map_ops *ops = get_dma_ops(dev);
952  struct scatterlist *s;
953  int i;
954 
955  for_each_sg(sg, s, nents, i)
957  dir);
958 }
959 
960 /*
961  * Return whether the given device DMA address mask can be supported
962  * properly. For example, if your device can only drive the low 24-bits
963  * during bus mastering, then you would pass 0x00ffffff as the mask
964  * to this function.
965  */
966 int dma_supported(struct device *dev, u64 mask)
967 {
968  if (mask < (u64)arm_dma_limit)
969  return 0;
970  return 1;
971 }
973 
974 static int arm_dma_set_mask(struct device *dev, u64 dma_mask)
975 {
976  if (!dev->dma_mask || !dma_supported(dev, dma_mask))
977  return -EIO;
978 
979  *dev->dma_mask = dma_mask;
980 
981  return 0;
982 }
983 
984 #define PREALLOC_DMA_DEBUG_ENTRIES 4096
985 
986 static int __init dma_debug_do_init(void)
987 {
989  return 0;
990 }
991 fs_initcall(dma_debug_do_init);
992 
993 #ifdef CONFIG_ARM_DMA_USE_IOMMU
994 
995 /* IOMMU */
996 
997 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
998  size_t size)
999 {
1000  unsigned int order = get_order(size);
1001  unsigned int align = 0;
1002  unsigned int count, start;
1003  unsigned long flags;
1004 
1005  count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
1006  (1 << mapping->order) - 1) >> mapping->order;
1007 
1008  if (order > mapping->order)
1009  align = (1 << (order - mapping->order)) - 1;
1010 
1011  spin_lock_irqsave(&mapping->lock, flags);
1012  start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
1013  count, align);
1014  if (start > mapping->bits) {
1015  spin_unlock_irqrestore(&mapping->lock, flags);
1016  return DMA_ERROR_CODE;
1017  }
1018 
1019  bitmap_set(mapping->bitmap, start, count);
1020  spin_unlock_irqrestore(&mapping->lock, flags);
1021 
1022  return mapping->base + (start << (mapping->order + PAGE_SHIFT));
1023 }
1024 
1025 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1026  dma_addr_t addr, size_t size)
1027 {
1028  unsigned int start = (addr - mapping->base) >>
1029  (mapping->order + PAGE_SHIFT);
1030  unsigned int count = ((size >> PAGE_SHIFT) +
1031  (1 << mapping->order) - 1) >> mapping->order;
1032  unsigned long flags;
1033 
1034  spin_lock_irqsave(&mapping->lock, flags);
1035  bitmap_clear(mapping->bitmap, start, count);
1036  spin_unlock_irqrestore(&mapping->lock, flags);
1037 }
1038 
1039 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
1040 {
1041  struct page **pages;
1042  int count = size >> PAGE_SHIFT;
1043  int array_size = count * sizeof(struct page *);
1044  int i = 0;
1045 
1046  if (array_size <= PAGE_SIZE)
1047  pages = kzalloc(array_size, gfp);
1048  else
1049  pages = vzalloc(array_size);
1050  if (!pages)
1051  return NULL;
1052 
1053  while (count) {
1054  int j, order = __fls(count);
1055 
1056  pages[i] = alloc_pages(gfp | __GFP_NOWARN, order);
1057  while (!pages[i] && order)
1058  pages[i] = alloc_pages(gfp | __GFP_NOWARN, --order);
1059  if (!pages[i])
1060  goto error;
1061 
1062  if (order) {
1063  split_page(pages[i], order);
1064  j = 1 << order;
1065  while (--j)
1066  pages[i + j] = pages[i] + j;
1067  }
1068 
1069  __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1070  i += 1 << order;
1071  count -= 1 << order;
1072  }
1073 
1074  return pages;
1075 error:
1076  while (i--)
1077  if (pages[i])
1078  __free_pages(pages[i], 0);
1079  if (array_size <= PAGE_SIZE)
1080  kfree(pages);
1081  else
1082  vfree(pages);
1083  return NULL;
1084 }
1085 
1086 static int __iommu_free_buffer(struct device *dev, struct page **pages, size_t size)
1087 {
1088  int count = size >> PAGE_SHIFT;
1089  int array_size = count * sizeof(struct page *);
1090  int i;
1091  for (i = 0; i < count; i++)
1092  if (pages[i])
1093  __free_pages(pages[i], 0);
1094  if (array_size <= PAGE_SIZE)
1095  kfree(pages);
1096  else
1097  vfree(pages);
1098  return 0;
1099 }
1100 
1101 /*
1102  * Create a CPU mapping for a specified pages
1103  */
1104 static void *
1105 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1106  const void *caller)
1107 {
1108  unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1109  struct vm_struct *area;
1110  unsigned long p;
1111 
1112  area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1113  caller);
1114  if (!area)
1115  return NULL;
1116 
1117  area->pages = pages;
1118  area->nr_pages = nr_pages;
1119  p = (unsigned long)area->addr;
1120 
1121  for (i = 0; i < nr_pages; i++) {
1123  if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1124  goto err;
1125  p += PAGE_SIZE;
1126  }
1127  return area->addr;
1128 err:
1129  unmap_kernel_range((unsigned long)area->addr, size);
1130  vunmap(area->addr);
1131  return NULL;
1132 }
1133 
1134 /*
1135  * Create a mapping in device IO address space for specified pages
1136  */
1137 static dma_addr_t
1138 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1139 {
1140  struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1141  unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1143  int i, ret = DMA_ERROR_CODE;
1144 
1145  dma_addr = __alloc_iova(mapping, size);
1146  if (dma_addr == DMA_ERROR_CODE)
1147  return dma_addr;
1148 
1149  iova = dma_addr;
1150  for (i = 0; i < count; ) {
1151  unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1152  phys_addr_t phys = page_to_phys(pages[i]);
1153  unsigned int len, j;
1154 
1155  for (j = i + 1; j < count; j++, next_pfn++)
1156  if (page_to_pfn(pages[j]) != next_pfn)
1157  break;
1158 
1159  len = (j - i) << PAGE_SHIFT;
1160  ret = iommu_map(mapping->domain, iova, phys, len, 0);
1161  if (ret < 0)
1162  goto fail;
1163  iova += len;
1164  i = j;
1165  }
1166  return dma_addr;
1167 fail:
1168  iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1169  __free_iova(mapping, dma_addr, size);
1170  return DMA_ERROR_CODE;
1171 }
1172 
1173 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1174 {
1175  struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1176 
1177  /*
1178  * add optional in-page offset from iova to size and align
1179  * result to page size
1180  */
1181  size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1182  iova &= PAGE_MASK;
1183 
1184  iommu_unmap(mapping->domain, iova, size);
1185  __free_iova(mapping, iova, size);
1186  return 0;
1187 }
1188 
1189 static struct page **__atomic_get_pages(void *addr)
1190 {
1191  struct dma_pool *pool = &atomic_pool;
1192  struct page **pages = pool->pages;
1193  int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
1194 
1195  return pages + offs;
1196 }
1197 
1198 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1199 {
1200  struct vm_struct *area;
1201 
1202  if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1203  return __atomic_get_pages(cpu_addr);
1204 
1205  if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1206  return cpu_addr;
1207 
1208  area = find_vm_area(cpu_addr);
1209  if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1210  return area->pages;
1211  return NULL;
1212 }
1213 
1214 static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1215  dma_addr_t *handle)
1216 {
1217  struct page *page;
1218  void *addr;
1219 
1220  addr = __alloc_from_pool(size, &page);
1221  if (!addr)
1222  return NULL;
1223 
1224  *handle = __iommu_create_mapping(dev, &page, size);
1225  if (*handle == DMA_ERROR_CODE)
1226  goto err_mapping;
1227 
1228  return addr;
1229 
1230 err_mapping:
1231  __free_from_pool(addr, size);
1232  return NULL;
1233 }
1234 
1235 static void __iommu_free_atomic(struct device *dev, struct page **pages,
1236  dma_addr_t handle, size_t size)
1237 {
1238  __iommu_remove_mapping(dev, handle, size);
1239  __free_from_pool(page_address(pages[0]), size);
1240 }
1241 
1242 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1243  dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1244 {
1245  pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1246  struct page **pages;
1247  void *addr = NULL;
1248 
1249  *handle = DMA_ERROR_CODE;
1250  size = PAGE_ALIGN(size);
1251 
1252  if (gfp & GFP_ATOMIC)
1253  return __iommu_alloc_atomic(dev, size, handle);
1254 
1255  pages = __iommu_alloc_buffer(dev, size, gfp);
1256  if (!pages)
1257  return NULL;
1258 
1259  *handle = __iommu_create_mapping(dev, pages, size);
1260  if (*handle == DMA_ERROR_CODE)
1261  goto err_buffer;
1262 
1263  if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1264  return pages;
1265 
1266  addr = __iommu_alloc_remap(pages, size, gfp, prot,
1267  __builtin_return_address(0));
1268  if (!addr)
1269  goto err_mapping;
1270 
1271  return addr;
1272 
1273 err_mapping:
1274  __iommu_remove_mapping(dev, *handle, size);
1275 err_buffer:
1276  __iommu_free_buffer(dev, pages, size);
1277  return NULL;
1278 }
1279 
1280 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1281  void *cpu_addr, dma_addr_t dma_addr, size_t size,
1282  struct dma_attrs *attrs)
1283 {
1284  unsigned long uaddr = vma->vm_start;
1285  unsigned long usize = vma->vm_end - vma->vm_start;
1286  struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1287 
1288  vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1289 
1290  if (!pages)
1291  return -ENXIO;
1292 
1293  do {
1294  int ret = vm_insert_page(vma, uaddr, *pages++);
1295  if (ret) {
1296  pr_err("Remapping memory failed: %d\n", ret);
1297  return ret;
1298  }
1299  uaddr += PAGE_SIZE;
1300  usize -= PAGE_SIZE;
1301  } while (usize > 0);
1302 
1303  return 0;
1304 }
1305 
1306 /*
1307  * free a page as defined by the above mapping.
1308  * Must not be called with IRQs disabled.
1309  */
1310 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1311  dma_addr_t handle, struct dma_attrs *attrs)
1312 {
1313  struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1314  size = PAGE_ALIGN(size);
1315 
1316  if (!pages) {
1317  WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1318  return;
1319  }
1320 
1321  if (__in_atomic_pool(cpu_addr, size)) {
1322  __iommu_free_atomic(dev, pages, handle, size);
1323  return;
1324  }
1325 
1326  if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1327  unmap_kernel_range((unsigned long)cpu_addr, size);
1328  vunmap(cpu_addr);
1329  }
1330 
1331  __iommu_remove_mapping(dev, handle, size);
1332  __iommu_free_buffer(dev, pages, size);
1333 }
1334 
1335 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1336  void *cpu_addr, dma_addr_t dma_addr,
1337  size_t size, struct dma_attrs *attrs)
1338 {
1339  unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1340  struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1341 
1342  if (!pages)
1343  return -ENXIO;
1344 
1345  return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1346  GFP_KERNEL);
1347 }
1348 
1349 /*
1350  * Map a part of the scatter-gather list into contiguous io address space
1351  */
1352 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1353  size_t size, dma_addr_t *handle,
1354  enum dma_data_direction dir, struct dma_attrs *attrs,
1355  bool is_coherent)
1356 {
1357  struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1358  dma_addr_t iova, iova_base;
1359  int ret = 0;
1360  unsigned int count;
1361  struct scatterlist *s;
1362 
1363  size = PAGE_ALIGN(size);
1364  *handle = DMA_ERROR_CODE;
1365 
1366  iova_base = iova = __alloc_iova(mapping, size);
1367  if (iova == DMA_ERROR_CODE)
1368  return -ENOMEM;
1369 
1370  for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1371  phys_addr_t phys = page_to_phys(sg_page(s));
1372  unsigned int len = PAGE_ALIGN(s->offset + s->length);
1373 
1374  if (!is_coherent &&
1375  !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1376  __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1377 
1378  ret = iommu_map(mapping->domain, iova, phys, len, 0);
1379  if (ret < 0)
1380  goto fail;
1381  count += len >> PAGE_SHIFT;
1382  iova += len;
1383  }
1384  *handle = iova_base;
1385 
1386  return 0;
1387 fail:
1388  iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1389  __free_iova(mapping, iova_base, size);
1390  return ret;
1391 }
1392 
1393 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1394  enum dma_data_direction dir, struct dma_attrs *attrs,
1395  bool is_coherent)
1396 {
1397  struct scatterlist *s = sg, *dma = sg, *start = sg;
1398  int i, count = 0;
1399  unsigned int offset = s->offset;
1400  unsigned int size = s->offset + s->length;
1401  unsigned int max = dma_get_max_seg_size(dev);
1402 
1403  for (i = 1; i < nents; i++) {
1404  s = sg_next(s);
1405 
1407  s->dma_length = 0;
1408 
1409  if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1410  if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1411  dir, attrs, is_coherent) < 0)
1412  goto bad_mapping;
1413 
1414  dma->dma_address += offset;
1415  dma->dma_length = size - offset;
1416 
1417  size = offset = s->offset;
1418  start = s;
1419  dma = sg_next(dma);
1420  count += 1;
1421  }
1422  size += s->length;
1423  }
1424  if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1425  is_coherent) < 0)
1426  goto bad_mapping;
1427 
1428  dma->dma_address += offset;
1429  dma->dma_length = size - offset;
1430 
1431  return count+1;
1432 
1433 bad_mapping:
1434  for_each_sg(sg, s, count, i)
1435  __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1436  return 0;
1437 }
1438 
1451 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1452  int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1453 {
1454  return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1455 }
1456 
1469 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1470  int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1471 {
1472  return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1473 }
1474 
1475 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1476  int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1477  bool is_coherent)
1478 {
1479  struct scatterlist *s;
1480  int i;
1481 
1482  for_each_sg(sg, s, nents, i) {
1483  if (sg_dma_len(s))
1484  __iommu_remove_mapping(dev, sg_dma_address(s),
1485  sg_dma_len(s));
1486  if (!is_coherent &&
1487  !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1488  __dma_page_dev_to_cpu(sg_page(s), s->offset,
1489  s->length, dir);
1490  }
1491 }
1492 
1503 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1504  int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1505 {
1506  __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1507 }
1508 
1519 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1520  enum dma_data_direction dir, struct dma_attrs *attrs)
1521 {
1522  __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1523 }
1524 
1532 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1533  int nents, enum dma_data_direction dir)
1534 {
1535  struct scatterlist *s;
1536  int i;
1537 
1538  for_each_sg(sg, s, nents, i)
1539  __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1540 
1541 }
1542 
1550 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1551  int nents, enum dma_data_direction dir)
1552 {
1553  struct scatterlist *s;
1554  int i;
1555 
1556  for_each_sg(sg, s, nents, i)
1557  __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1558 }
1559 
1560 
1571 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1572  unsigned long offset, size_t size, enum dma_data_direction dir,
1573  struct dma_attrs *attrs)
1574 {
1575  struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1577  int ret, len = PAGE_ALIGN(size + offset);
1578 
1579  dma_addr = __alloc_iova(mapping, len);
1580  if (dma_addr == DMA_ERROR_CODE)
1581  return dma_addr;
1582 
1583  ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0);
1584  if (ret < 0)
1585  goto fail;
1586 
1587  return dma_addr + offset;
1588 fail:
1589  __free_iova(mapping, dma_addr, len);
1590  return DMA_ERROR_CODE;
1591 }
1592 
1603 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1604  unsigned long offset, size_t size, enum dma_data_direction dir,
1605  struct dma_attrs *attrs)
1606 {
1607  if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1608  __dma_page_cpu_to_dev(page, offset, size, dir);
1609 
1610  return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1611 }
1612 
1622 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1623  size_t size, enum dma_data_direction dir,
1624  struct dma_attrs *attrs)
1625 {
1626  struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1627  dma_addr_t iova = handle & PAGE_MASK;
1628  int offset = handle & ~PAGE_MASK;
1629  int len = PAGE_ALIGN(size + offset);
1630 
1631  if (!iova)
1632  return;
1633 
1634  iommu_unmap(mapping->domain, iova, len);
1635  __free_iova(mapping, iova, len);
1636 }
1637 
1647 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1648  size_t size, enum dma_data_direction dir,
1649  struct dma_attrs *attrs)
1650 {
1651  struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1652  dma_addr_t iova = handle & PAGE_MASK;
1653  struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1654  int offset = handle & ~PAGE_MASK;
1655  int len = PAGE_ALIGN(size + offset);
1656 
1657  if (!iova)
1658  return;
1659 
1660  if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1661  __dma_page_dev_to_cpu(page, offset, size, dir);
1662 
1663  iommu_unmap(mapping->domain, iova, len);
1664  __free_iova(mapping, iova, len);
1665 }
1666 
1667 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1668  dma_addr_t handle, size_t size, enum dma_data_direction dir)
1669 {
1670  struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1671  dma_addr_t iova = handle & PAGE_MASK;
1672  struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1673  unsigned int offset = handle & ~PAGE_MASK;
1674 
1675  if (!iova)
1676  return;
1677 
1678  __dma_page_dev_to_cpu(page, offset, size, dir);
1679 }
1680 
1681 static void arm_iommu_sync_single_for_device(struct device *dev,
1682  dma_addr_t handle, size_t size, enum dma_data_direction dir)
1683 {
1684  struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1685  dma_addr_t iova = handle & PAGE_MASK;
1686  struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1687  unsigned int offset = handle & ~PAGE_MASK;
1688 
1689  if (!iova)
1690  return;
1691 
1692  __dma_page_cpu_to_dev(page, offset, size, dir);
1693 }
1694 
1695 struct dma_map_ops iommu_ops = {
1696  .alloc = arm_iommu_alloc_attrs,
1697  .free = arm_iommu_free_attrs,
1698  .mmap = arm_iommu_mmap_attrs,
1699  .get_sgtable = arm_iommu_get_sgtable,
1700 
1701  .map_page = arm_iommu_map_page,
1702  .unmap_page = arm_iommu_unmap_page,
1703  .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1704  .sync_single_for_device = arm_iommu_sync_single_for_device,
1705 
1706  .map_sg = arm_iommu_map_sg,
1707  .unmap_sg = arm_iommu_unmap_sg,
1708  .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1709  .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1710 };
1711 
1712 struct dma_map_ops iommu_coherent_ops = {
1713  .alloc = arm_iommu_alloc_attrs,
1714  .free = arm_iommu_free_attrs,
1715  .mmap = arm_iommu_mmap_attrs,
1716  .get_sgtable = arm_iommu_get_sgtable,
1717 
1718  .map_page = arm_coherent_iommu_map_page,
1719  .unmap_page = arm_coherent_iommu_unmap_page,
1720 
1721  .map_sg = arm_coherent_iommu_map_sg,
1722  .unmap_sg = arm_coherent_iommu_unmap_sg,
1723 };
1724 
1739 struct dma_iommu_mapping *
1740 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
1741  int order)
1742 {
1743  unsigned int count = size >> (PAGE_SHIFT + order);
1744  unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
1745  struct dma_iommu_mapping *mapping;
1746  int err = -ENOMEM;
1747 
1748  if (!count)
1749  return ERR_PTR(-EINVAL);
1750 
1751  mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1752  if (!mapping)
1753  goto err;
1754 
1755  mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1756  if (!mapping->bitmap)
1757  goto err2;
1758 
1759  mapping->base = base;
1760  mapping->bits = BITS_PER_BYTE * bitmap_size;
1761  mapping->order = order;
1762  spin_lock_init(&mapping->lock);
1763 
1764  mapping->domain = iommu_domain_alloc(bus);
1765  if (!mapping->domain)
1766  goto err3;
1767 
1768  kref_init(&mapping->kref);
1769  return mapping;
1770 err3:
1771  kfree(mapping->bitmap);
1772 err2:
1773  kfree(mapping);
1774 err:
1775  return ERR_PTR(err);
1776 }
1777 
1778 static void release_iommu_mapping(struct kref *kref)
1779 {
1780  struct dma_iommu_mapping *mapping =
1781  container_of(kref, struct dma_iommu_mapping, kref);
1782 
1783  iommu_domain_free(mapping->domain);
1784  kfree(mapping->bitmap);
1785  kfree(mapping);
1786 }
1787 
1788 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1789 {
1790  if (mapping)
1791  kref_put(&mapping->kref, release_iommu_mapping);
1792 }
1793 
1805 int arm_iommu_attach_device(struct device *dev,
1806  struct dma_iommu_mapping *mapping)
1807 {
1808  int err;
1809 
1810  err = iommu_attach_device(mapping->domain, dev);
1811  if (err)
1812  return err;
1813 
1814  kref_get(&mapping->kref);
1815  dev->archdata.mapping = mapping;
1816  set_dma_ops(dev, &iommu_ops);
1817 
1818  pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1819  return 0;
1820 }
1821 
1822 #endif