Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
sba_iommu.c
Go to the documentation of this file.
1 /*
2 ** IA64 System Bus Adapter (SBA) I/O MMU manager
3 **
4 ** (c) Copyright 2002-2005 Alex Williamson
5 ** (c) Copyright 2002-2003 Grant Grundler
6 ** (c) Copyright 2002-2005 Hewlett-Packard Company
7 **
8 ** Portions (c) 2000 Grant Grundler (from parisc I/O MMU code)
9 ** Portions (c) 1999 Dave S. Miller (from sparc64 I/O MMU code)
10 **
11 ** This program is free software; you can redistribute it and/or modify
12 ** it under the terms of the GNU General Public License as published by
13 ** the Free Software Foundation; either version 2 of the License, or
14 ** (at your option) any later version.
15 **
16 **
17 ** This module initializes the IOC (I/O Controller) found on HP
18 ** McKinley machines and their successors.
19 **
20 */
21 
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/spinlock.h>
26 #include <linux/slab.h>
27 #include <linux/init.h>
28 #include <linux/mm.h>
29 #include <linux/string.h>
30 #include <linux/pci.h>
31 #include <linux/proc_fs.h>
32 #include <linux/seq_file.h>
33 #include <linux/acpi.h>
34 #include <linux/efi.h>
35 #include <linux/nodemask.h>
36 #include <linux/bitops.h> /* hweight64() */
37 #include <linux/crash_dump.h>
38 #include <linux/iommu-helper.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/prefetch.h>
41 
42 #include <asm/delay.h> /* ia64_get_itc() */
43 #include <asm/io.h>
44 #include <asm/page.h> /* PAGE_OFFSET */
45 #include <asm/dma.h>
46 
47 #include <asm/acpi-ext.h>
48 
49 extern int swiotlb_late_init_with_default_size (size_t size);
50 
51 #define PFX "IOC: "
52 
53 /*
54 ** Enabling timing search of the pdir resource map. Output in /proc.
55 ** Disabled by default to optimize performance.
56 */
57 #undef PDIR_SEARCH_TIMING
58 
59 /*
60 ** This option allows cards capable of 64bit DMA to bypass the IOMMU. If
61 ** not defined, all DMA will be 32bit and go through the TLB.
62 ** There's potentially a conflict in the bio merge code with us
63 ** advertising an iommu, but then bypassing it. Since I/O MMU bypassing
64 ** appears to give more performance than bio-level virtual merging, we'll
65 ** do the former for now. NOTE: BYPASS_SG also needs to be undef'd to
66 ** completely restrict DMA to the IOMMU.
67 */
68 #define ALLOW_IOV_BYPASS
69 
70 /*
71 ** This option specifically allows/disallows bypassing scatterlists with
72 ** multiple entries. Coalescing these entries can allow better DMA streaming
73 ** and in some cases shows better performance than entirely bypassing the
74 ** IOMMU. Performance increase on the order of 1-2% sequential output/input
75 ** using bonnie++ on a RAID0 MD device (sym2 & mpt).
76 */
77 #undef ALLOW_IOV_BYPASS_SG
78 
79 /*
80 ** If a device prefetches beyond the end of a valid pdir entry, it will cause
81 ** a hard failure, ie. MCA. Version 3.0 and later of the zx1 LBA should
82 ** disconnect on 4k boundaries and prevent such issues. If the device is
83 ** particularly aggressive, this option will keep the entire pdir valid such
84 ** that prefetching will hit a valid address. This could severely impact
85 ** error containment, and is therefore off by default. The page that is
86 ** used for spill-over is poisoned, so that should help debugging somewhat.
87 */
88 #undef FULL_VALID_PDIR
89 
90 #define ENABLE_MARK_CLEAN
91 
92 /*
93 ** The number of debug flags is a clue - this code is fragile. NOTE: since
94 ** tightening the use of res_lock the resource bitmap and actual pdir are no
95 ** longer guaranteed to stay in sync. The sanity checking code isn't going to
96 ** like that.
97 */
98 #undef DEBUG_SBA_INIT
99 #undef DEBUG_SBA_RUN
100 #undef DEBUG_SBA_RUN_SG
101 #undef DEBUG_SBA_RESOURCE
102 #undef ASSERT_PDIR_SANITY
103 #undef DEBUG_LARGE_SG_ENTRIES
104 #undef DEBUG_BYPASS
105 
106 #if defined(FULL_VALID_PDIR) && defined(ASSERT_PDIR_SANITY)
107 #error FULL_VALID_PDIR and ASSERT_PDIR_SANITY are mutually exclusive
108 #endif
109 
110 #define SBA_INLINE __inline__
111 /* #define SBA_INLINE */
112 
113 #ifdef DEBUG_SBA_INIT
114 #define DBG_INIT(x...) printk(x)
115 #else
116 #define DBG_INIT(x...)
117 #endif
118 
119 #ifdef DEBUG_SBA_RUN
120 #define DBG_RUN(x...) printk(x)
121 #else
122 #define DBG_RUN(x...)
123 #endif
124 
125 #ifdef DEBUG_SBA_RUN_SG
126 #define DBG_RUN_SG(x...) printk(x)
127 #else
128 #define DBG_RUN_SG(x...)
129 #endif
130 
131 
132 #ifdef DEBUG_SBA_RESOURCE
133 #define DBG_RES(x...) printk(x)
134 #else
135 #define DBG_RES(x...)
136 #endif
137 
138 #ifdef DEBUG_BYPASS
139 #define DBG_BYPASS(x...) printk(x)
140 #else
141 #define DBG_BYPASS(x...)
142 #endif
143 
144 #ifdef ASSERT_PDIR_SANITY
145 #define ASSERT(expr) \
146  if(!(expr)) { \
147  printk( "\n" __FILE__ ":%d: Assertion " #expr " failed!\n",__LINE__); \
148  panic(#expr); \
149  }
150 #else
151 #define ASSERT(expr)
152 #endif
153 
154 /*
155 ** The number of pdir entries to "free" before issuing
156 ** a read to PCOM register to flush out PCOM writes.
157 ** Interacts with allocation granularity (ie 4 or 8 entries
158 ** allocated and free'd/purged at a time might make this
159 ** less interesting).
160 */
161 #define DELAYED_RESOURCE_CNT 64
162 
163 #define PCI_DEVICE_ID_HP_SX2000_IOC 0x12ec
164 
165 #define ZX1_IOC_ID ((PCI_DEVICE_ID_HP_ZX1_IOC << 16) | PCI_VENDOR_ID_HP)
166 #define ZX2_IOC_ID ((PCI_DEVICE_ID_HP_ZX2_IOC << 16) | PCI_VENDOR_ID_HP)
167 #define REO_IOC_ID ((PCI_DEVICE_ID_HP_REO_IOC << 16) | PCI_VENDOR_ID_HP)
168 #define SX1000_IOC_ID ((PCI_DEVICE_ID_HP_SX1000_IOC << 16) | PCI_VENDOR_ID_HP)
169 #define SX2000_IOC_ID ((PCI_DEVICE_ID_HP_SX2000_IOC << 16) | PCI_VENDOR_ID_HP)
170 
171 #define ZX1_IOC_OFFSET 0x1000 /* ACPI reports SBA, we want IOC */
172 
173 #define IOC_FUNC_ID 0x000
174 #define IOC_FCLASS 0x008 /* function class, bist, header, rev... */
175 #define IOC_IBASE 0x300 /* IO TLB */
176 #define IOC_IMASK 0x308
177 #define IOC_PCOM 0x310
178 #define IOC_TCNFG 0x318
179 #define IOC_PDIR_BASE 0x320
180 
181 #define IOC_ROPE0_CFG 0x500
182 #define IOC_ROPE_AO 0x10 /* Allow "Relaxed Ordering" */
183 
184 
185 /* AGP GART driver looks for this */
186 #define ZX1_SBA_IOMMU_COOKIE 0x0000badbadc0ffeeUL
187 
188 /*
189 ** The zx1 IOC supports 4/8/16/64KB page sizes (see TCNFG register)
190 **
191 ** Some IOCs (sx1000) can run at the above pages sizes, but are
192 ** really only supported using the IOC at a 4k page size.
193 **
194 ** iovp_size could only be greater than PAGE_SIZE if we are
195 ** confident the drivers really only touch the next physical
196 ** page iff that driver instance owns it.
197 */
198 static unsigned long iovp_size;
199 static unsigned long iovp_shift;
200 static unsigned long iovp_mask;
201 
202 struct ioc {
203  void __iomem *ioc_hpa; /* I/O MMU base address */
204  char *res_map; /* resource map, bit == pdir entry */
205  u64 *pdir_base; /* physical base address */
206  unsigned long ibase; /* pdir IOV Space base */
207  unsigned long imask; /* pdir IOV Space mask */
208 
209  unsigned long *res_hint; /* next avail IOVP - circular search */
210  unsigned long dma_mask;
211  spinlock_t res_lock; /* protects the resource bitmap, but must be held when */
212  /* clearing pdir to prevent races with allocations. */
213  unsigned int res_bitshift; /* from the RIGHT! */
214  unsigned int res_size; /* size of resource map in bytes */
215 #ifdef CONFIG_NUMA
216  unsigned int node; /* node where this IOC lives */
217 #endif
218 #if DELAYED_RESOURCE_CNT > 0
219  spinlock_t saved_lock; /* may want to try to get this on a separate cacheline */
220  /* than res_lock for bigger systems. */
222  struct sba_dma_pair {
224  size_t size;
226 #endif
227 
228 #ifdef PDIR_SEARCH_TIMING
229 #define SBA_SEARCH_SAMPLE 0x100
230  unsigned long avg_search[SBA_SEARCH_SAMPLE];
231  unsigned long avg_idx; /* current index into avg_search */
232 #endif
233 
234  /* Stuff we don't need in performance path */
235  struct ioc *next; /* list of IOC's in system */
236  acpi_handle handle; /* for multiple IOC's */
237  const char *name;
238  unsigned int func_id;
239  unsigned int rev; /* HW revision of chip */
241  unsigned int pdir_size; /* in bytes, determined by IOV Space size */
243 };
244 
245 static struct ioc *ioc_list;
246 static int reserve_sba_gart = 1;
247 
248 static SBA_INLINE void sba_mark_invalid(struct ioc *, dma_addr_t, size_t);
249 static SBA_INLINE void sba_free_range(struct ioc *, dma_addr_t, size_t);
250 
251 #define sba_sg_address(sg) sg_virt((sg))
252 
253 #ifdef FULL_VALID_PDIR
254 static u64 prefetch_spill_page;
255 #endif
256 
257 #ifdef CONFIG_PCI
258 # define GET_IOC(dev) (((dev)->bus == &pci_bus_type) \
259  ? ((struct ioc *) PCI_CONTROLLER(to_pci_dev(dev))->iommu) : NULL)
260 #else
261 # define GET_IOC(dev) NULL
262 #endif
263 
264 /*
265 ** DMA_CHUNK_SIZE is used by the SCSI mid-layer to break up
266 ** (or rather not merge) DMAs into manageable chunks.
267 ** On parisc, this is more of the software/tuning constraint
268 ** rather than the HW. I/O MMU allocation algorithms can be
269 ** faster with smaller sizes (to some degree).
270 */
271 #define DMA_CHUNK_SIZE (BITS_PER_LONG*iovp_size)
272 
273 #define ROUNDUP(x,y) ((x + ((y)-1)) & ~((y)-1))
274 
275 /************************************
276 ** SBA register read and write support
277 **
278 ** BE WARNED: register writes are posted.
279 ** (ie follow writes which must reach HW with a read)
280 **
281 */
282 #define READ_REG(addr) __raw_readq(addr)
283 #define WRITE_REG(val, addr) __raw_writeq(val, addr)
284 
285 #ifdef DEBUG_SBA_INIT
286 
293 static void
294 sba_dump_tlb(char *hpa)
295 {
296  DBG_INIT("IO TLB at 0x%p\n", (void *)hpa);
297  DBG_INIT("IOC_IBASE : %016lx\n", READ_REG(hpa+IOC_IBASE));
298  DBG_INIT("IOC_IMASK : %016lx\n", READ_REG(hpa+IOC_IMASK));
299  DBG_INIT("IOC_TCNFG : %016lx\n", READ_REG(hpa+IOC_TCNFG));
300  DBG_INIT("IOC_PDIR_BASE: %016lx\n", READ_REG(hpa+IOC_PDIR_BASE));
301  DBG_INIT("\n");
302 }
303 #endif
304 
305 
306 #ifdef ASSERT_PDIR_SANITY
307 
316 static void
317 sba_dump_pdir_entry(struct ioc *ioc, char *msg, uint pide)
318 {
319  /* start printing from lowest pde in rval */
320  u64 *ptr = &ioc->pdir_base[pide & ~(BITS_PER_LONG - 1)];
321  unsigned long *rptr = (unsigned long *) &ioc->res_map[(pide >>3) & -sizeof(unsigned long)];
322  uint rcnt;
323 
324  printk(KERN_DEBUG "SBA: %s rp %p bit %d rval 0x%lx\n",
325  msg, rptr, pide & (BITS_PER_LONG - 1), *rptr);
326 
327  rcnt = 0;
328  while (rcnt < BITS_PER_LONG) {
329  printk(KERN_DEBUG "%s %2d %p %016Lx\n",
330  (rcnt == (pide & (BITS_PER_LONG - 1)))
331  ? " -->" : " ",
332  rcnt, ptr, (unsigned long long) *ptr );
333  rcnt++;
334  ptr++;
335  }
336  printk(KERN_DEBUG "%s", msg);
337 }
338 
339 
347 static int
348 sba_check_pdir(struct ioc *ioc, char *msg)
349 {
350  u64 *rptr_end = (u64 *) &(ioc->res_map[ioc->res_size]);
351  u64 *rptr = (u64 *) ioc->res_map; /* resource map ptr */
352  u64 *pptr = ioc->pdir_base; /* pdir ptr */
353  uint pide = 0;
354 
355  while (rptr < rptr_end) {
356  u64 rval;
357  int rcnt; /* number of bits we might check */
358 
359  rval = *rptr;
360  rcnt = 64;
361 
362  while (rcnt) {
363  /* Get last byte and highest bit from that */
364  u32 pde = ((u32)((*pptr >> (63)) & 0x1));
365  if ((rval & 0x1) ^ pde)
366  {
367  /*
368  ** BUMMER! -- res_map != pdir --
369  ** Dump rval and matching pdir entries
370  */
371  sba_dump_pdir_entry(ioc, msg, pide);
372  return(1);
373  }
374  rcnt--;
375  rval >>= 1; /* try the next bit */
376  pptr++;
377  pide++;
378  }
379  rptr++; /* look at next word of res_map */
380  }
381  /* It'd be nice if we always got here :^) */
382  return 0;
383 }
384 
385 
394 static void
395 sba_dump_sg( struct ioc *ioc, struct scatterlist *startsg, int nents)
396 {
397  while (nents-- > 0) {
398  printk(KERN_DEBUG " %d : DMA %08lx/%05x CPU %p\n", nents,
399  startsg->dma_address, startsg->dma_length,
400  sba_sg_address(startsg));
401  startsg = sg_next(startsg);
402  }
403 }
404 
405 static void
406 sba_check_sg( struct ioc *ioc, struct scatterlist *startsg, int nents)
407 {
408  struct scatterlist *the_sg = startsg;
409  int the_nents = nents;
410 
411  while (the_nents-- > 0) {
412  if (sba_sg_address(the_sg) == 0x0UL)
413  sba_dump_sg(NULL, startsg, nents);
414  the_sg = sg_next(the_sg);
415  }
416 }
417 
418 #endif /* ASSERT_PDIR_SANITY */
419 
420 
421 
422 
423 /**************************************************************
424 *
425 * I/O Pdir Resource Management
426 *
427 * Bits set in the resource map are in use.
428 * Each bit can represent a number of pages.
429 * LSbs represent lower addresses (IOVA's).
430 *
431 ***************************************************************/
432 #define PAGES_PER_RANGE 1 /* could increase this to 4 or 8 if needed */
433 
434 /* Convert from IOVP to IOVA and vice versa. */
435 #define SBA_IOVA(ioc,iovp,offset) ((ioc->ibase) | (iovp) | (offset))
436 #define SBA_IOVP(ioc,iova) ((iova) & ~(ioc->ibase))
437 
438 #define PDIR_ENTRY_SIZE sizeof(u64)
439 
440 #define PDIR_INDEX(iovp) ((iovp)>>iovp_shift)
441 
442 #define RESMAP_MASK(n) ~(~0UL << (n))
443 #define RESMAP_IDX_MASK (sizeof(unsigned long) - 1)
444 
445 
452 static SBA_INLINE int
453 get_iovp_order (unsigned long size)
454 {
455  long double d = size - 1;
456  long order;
457 
458  order = ia64_getf_exp(d);
459  order = order - iovp_shift - 0xffff + 1;
460  if (order < 0)
461  order = 0;
462  return order;
463 }
464 
465 static unsigned long ptr_to_pide(struct ioc *ioc, unsigned long *res_ptr,
466  unsigned int bitshiftcnt)
467 {
468  return (((unsigned long)res_ptr - (unsigned long)ioc->res_map) << 3)
469  + bitshiftcnt;
470 }
471 
482 static SBA_INLINE unsigned long
483 sba_search_bitmap(struct ioc *ioc, struct device *dev,
484  unsigned long bits_wanted, int use_hint)
485 {
486  unsigned long *res_ptr;
487  unsigned long *res_end = (unsigned long *) &(ioc->res_map[ioc->res_size]);
488  unsigned long flags, pide = ~0UL, tpide;
489  unsigned long boundary_size;
490  unsigned long shift;
491  int ret;
492 
493  ASSERT(((unsigned long) ioc->res_hint & (sizeof(unsigned long) - 1UL)) == 0);
494  ASSERT(res_ptr < res_end);
495 
496  boundary_size = (unsigned long long)dma_get_seg_boundary(dev) + 1;
497  boundary_size = ALIGN(boundary_size, 1ULL << iovp_shift) >> iovp_shift;
498 
499  BUG_ON(ioc->ibase & ~iovp_mask);
500  shift = ioc->ibase >> iovp_shift;
501 
502  spin_lock_irqsave(&ioc->res_lock, flags);
503 
504  /* Allow caller to force a search through the entire resource space */
505  if (likely(use_hint)) {
506  res_ptr = ioc->res_hint;
507  } else {
508  res_ptr = (ulong *)ioc->res_map;
509  ioc->res_bitshift = 0;
510  }
511 
512  /*
513  * N.B. REO/Grande defect AR2305 can cause TLB fetch timeouts
514  * if a TLB entry is purged while in use. sba_mark_invalid()
515  * purges IOTLB entries in power-of-two sizes, so we also
516  * allocate IOVA space in power-of-two sizes.
517  */
518  bits_wanted = 1UL << get_iovp_order(bits_wanted << iovp_shift);
519 
520  if (likely(bits_wanted == 1)) {
521  unsigned int bitshiftcnt;
522  for(; res_ptr < res_end ; res_ptr++) {
523  if (likely(*res_ptr != ~0UL)) {
524  bitshiftcnt = ffz(*res_ptr);
525  *res_ptr |= (1UL << bitshiftcnt);
526  pide = ptr_to_pide(ioc, res_ptr, bitshiftcnt);
527  ioc->res_bitshift = bitshiftcnt + bits_wanted;
528  goto found_it;
529  }
530  }
531  goto not_found;
532 
533  }
534 
535  if (likely(bits_wanted <= BITS_PER_LONG/2)) {
536  /*
537  ** Search the resource bit map on well-aligned values.
538  ** "o" is the alignment.
539  ** We need the alignment to invalidate I/O TLB using
540  ** SBA HW features in the unmap path.
541  */
542  unsigned long o = 1 << get_iovp_order(bits_wanted << iovp_shift);
543  uint bitshiftcnt = ROUNDUP(ioc->res_bitshift, o);
544  unsigned long mask, base_mask;
545 
546  base_mask = RESMAP_MASK(bits_wanted);
547  mask = base_mask << bitshiftcnt;
548 
549  DBG_RES("%s() o %ld %p", __func__, o, res_ptr);
550  for(; res_ptr < res_end ; res_ptr++)
551  {
552  DBG_RES(" %p %lx %lx\n", res_ptr, mask, *res_ptr);
553  ASSERT(0 != mask);
554  for (; mask ; mask <<= o, bitshiftcnt += o) {
555  tpide = ptr_to_pide(ioc, res_ptr, bitshiftcnt);
556  ret = iommu_is_span_boundary(tpide, bits_wanted,
557  shift,
558  boundary_size);
559  if ((0 == ((*res_ptr) & mask)) && !ret) {
560  *res_ptr |= mask; /* mark resources busy! */
561  pide = tpide;
562  ioc->res_bitshift = bitshiftcnt + bits_wanted;
563  goto found_it;
564  }
565  }
566 
567  bitshiftcnt = 0;
568  mask = base_mask;
569 
570  }
571 
572  } else {
573  int qwords, bits, i;
574  unsigned long *end;
575 
576  qwords = bits_wanted >> 6; /* /64 */
577  bits = bits_wanted - (qwords * BITS_PER_LONG);
578 
579  end = res_end - qwords;
580 
581  for (; res_ptr < end; res_ptr++) {
582  tpide = ptr_to_pide(ioc, res_ptr, 0);
583  ret = iommu_is_span_boundary(tpide, bits_wanted,
584  shift, boundary_size);
585  if (ret)
586  goto next_ptr;
587  for (i = 0 ; i < qwords ; i++) {
588  if (res_ptr[i] != 0)
589  goto next_ptr;
590  }
591  if (bits && res_ptr[i] && (__ffs(res_ptr[i]) < bits))
592  continue;
593 
594  /* Found it, mark it */
595  for (i = 0 ; i < qwords ; i++)
596  res_ptr[i] = ~0UL;
597  res_ptr[i] |= RESMAP_MASK(bits);
598 
599  pide = tpide;
600  res_ptr += qwords;
601  ioc->res_bitshift = bits;
602  goto found_it;
603 next_ptr:
604  ;
605  }
606  }
607 
608 not_found:
609  prefetch(ioc->res_map);
610  ioc->res_hint = (unsigned long *) ioc->res_map;
611  ioc->res_bitshift = 0;
612  spin_unlock_irqrestore(&ioc->res_lock, flags);
613  return (pide);
614 
615 found_it:
616  ioc->res_hint = res_ptr;
617  spin_unlock_irqrestore(&ioc->res_lock, flags);
618  return (pide);
619 }
620 
621 
630 static int
631 sba_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
632 {
633  unsigned int pages_needed = size >> iovp_shift;
634 #ifdef PDIR_SEARCH_TIMING
635  unsigned long itc_start;
636 #endif
637  unsigned long pide;
638 
639  ASSERT(pages_needed);
640  ASSERT(0 == (size & ~iovp_mask));
641 
642 #ifdef PDIR_SEARCH_TIMING
643  itc_start = ia64_get_itc();
644 #endif
645  /*
646  ** "seek and ye shall find"...praying never hurts either...
647  */
648  pide = sba_search_bitmap(ioc, dev, pages_needed, 1);
649  if (unlikely(pide >= (ioc->res_size << 3))) {
650  pide = sba_search_bitmap(ioc, dev, pages_needed, 0);
651  if (unlikely(pide >= (ioc->res_size << 3))) {
652 #if DELAYED_RESOURCE_CNT > 0
653  unsigned long flags;
654 
655  /*
656  ** With delayed resource freeing, we can give this one more shot. We're
657  ** getting close to being in trouble here, so do what we can to make this
658  ** one count.
659  */
660  spin_lock_irqsave(&ioc->saved_lock, flags);
661  if (ioc->saved_cnt > 0) {
662  struct sba_dma_pair *d;
663  int cnt = ioc->saved_cnt;
664 
665  d = &(ioc->saved[ioc->saved_cnt - 1]);
666 
667  spin_lock(&ioc->res_lock);
668  while (cnt--) {
669  sba_mark_invalid(ioc, d->iova, d->size);
670  sba_free_range(ioc, d->iova, d->size);
671  d--;
672  }
673  ioc->saved_cnt = 0;
674  READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */
675  spin_unlock(&ioc->res_lock);
676  }
677  spin_unlock_irqrestore(&ioc->saved_lock, flags);
678 
679  pide = sba_search_bitmap(ioc, dev, pages_needed, 0);
680  if (unlikely(pide >= (ioc->res_size << 3))) {
681  printk(KERN_WARNING "%s: I/O MMU @ %p is"
682  "out of mapping resources, %u %u %lx\n",
683  __func__, ioc->ioc_hpa, ioc->res_size,
684  pages_needed, dma_get_seg_boundary(dev));
685  return -1;
686  }
687 #else
688  printk(KERN_WARNING "%s: I/O MMU @ %p is"
689  "out of mapping resources, %u %u %lx\n",
690  __func__, ioc->ioc_hpa, ioc->res_size,
691  pages_needed, dma_get_seg_boundary(dev));
692  return -1;
693 #endif
694  }
695  }
696 
697 #ifdef PDIR_SEARCH_TIMING
698  ioc->avg_search[ioc->avg_idx++] = (ia64_get_itc() - itc_start) / pages_needed;
699  ioc->avg_idx &= SBA_SEARCH_SAMPLE - 1;
700 #endif
701 
702  prefetchw(&(ioc->pdir_base[pide]));
703 
704 #ifdef ASSERT_PDIR_SANITY
705  /* verify the first enable bit is clear */
706  if(0x00 != ((u8 *) ioc->pdir_base)[pide*PDIR_ENTRY_SIZE + 7]) {
707  sba_dump_pdir_entry(ioc, "sba_search_bitmap() botched it?", pide);
708  }
709 #endif
710 
711  DBG_RES("%s(%x) %d -> %lx hint %x/%x\n",
712  __func__, size, pages_needed, pide,
713  (uint) ((unsigned long) ioc->res_hint - (unsigned long) ioc->res_map),
714  ioc->res_bitshift );
715 
716  return (pide);
717 }
718 
719 
728 static SBA_INLINE void
729 sba_free_range(struct ioc *ioc, dma_addr_t iova, size_t size)
730 {
731  unsigned long iovp = SBA_IOVP(ioc, iova);
732  unsigned int pide = PDIR_INDEX(iovp);
733  unsigned int ridx = pide >> 3; /* convert bit to byte address */
734  unsigned long *res_ptr = (unsigned long *) &((ioc)->res_map[ridx & ~RESMAP_IDX_MASK]);
735  int bits_not_wanted = size >> iovp_shift;
736  unsigned long m;
737 
738  /* Round up to power-of-two size: see AR2305 note above */
739  bits_not_wanted = 1UL << get_iovp_order(bits_not_wanted << iovp_shift);
740  for (; bits_not_wanted > 0 ; res_ptr++) {
741 
742  if (unlikely(bits_not_wanted > BITS_PER_LONG)) {
743 
744  /* these mappings start 64bit aligned */
745  *res_ptr = 0UL;
746  bits_not_wanted -= BITS_PER_LONG;
747  pide += BITS_PER_LONG;
748 
749  } else {
750 
751  /* 3-bits "bit" address plus 2 (or 3) bits for "byte" == bit in word */
752  m = RESMAP_MASK(bits_not_wanted) << (pide & (BITS_PER_LONG - 1));
753  bits_not_wanted = 0;
754 
755  DBG_RES("%s( ,%x,%x) %x/%lx %x %p %lx\n", __func__, (uint) iova, size,
756  bits_not_wanted, m, pide, res_ptr, *res_ptr);
757 
758  ASSERT(m != 0);
759  ASSERT(bits_not_wanted);
760  ASSERT((*res_ptr & m) == m); /* verify same bits are set */
761  *res_ptr &= ~m;
762  }
763  }
764 }
765 
766 
767 /**************************************************************
768 *
769 * "Dynamic DMA Mapping" support (aka "Coherent I/O")
770 *
771 ***************************************************************/
772 
798 #if 1
799 #define sba_io_pdir_entry(pdir_ptr, vba) *pdir_ptr = ((vba & ~0xE000000000000FFFULL) \
800  | 0x8000000000000000ULL)
801 #else
802 void SBA_INLINE
803 sba_io_pdir_entry(u64 *pdir_ptr, unsigned long vba)
804 {
805  *pdir_ptr = ((vba & ~0xE000000000000FFFULL) | 0x80000000000000FFULL);
806 }
807 #endif
808 
809 #ifdef ENABLE_MARK_CLEAN
810 
815 static void
816 mark_clean (void *addr, size_t size)
817 {
818  unsigned long pg_addr, end;
819 
820  pg_addr = PAGE_ALIGN((unsigned long) addr);
821  end = (unsigned long) addr + size;
822  while (pg_addr + PAGE_SIZE <= end) {
823  struct page *page = virt_to_page((void *)pg_addr);
824  set_bit(PG_arch_1, &page->flags);
825  pg_addr += PAGE_SIZE;
826  }
827 }
828 #endif
829 
846 static SBA_INLINE void
847 sba_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
848 {
849  u32 iovp = (u32) SBA_IOVP(ioc,iova);
850 
851  int off = PDIR_INDEX(iovp);
852 
853  /* Must be non-zero and rounded up */
854  ASSERT(byte_cnt > 0);
855  ASSERT(0 == (byte_cnt & ~iovp_mask));
856 
857 #ifdef ASSERT_PDIR_SANITY
858  /* Assert first pdir entry is set */
859  if (!(ioc->pdir_base[off] >> 60)) {
860  sba_dump_pdir_entry(ioc,"sba_mark_invalid()", PDIR_INDEX(iovp));
861  }
862 #endif
863 
864  if (byte_cnt <= iovp_size)
865  {
866  ASSERT(off < ioc->pdir_size);
867 
868  iovp |= iovp_shift; /* set "size" field for PCOM */
869 
870 #ifndef FULL_VALID_PDIR
871  /*
872  ** clear I/O PDIR entry "valid" bit
873  ** Do NOT clear the rest - save it for debugging.
874  ** We should only clear bits that have previously
875  ** been enabled.
876  */
877  ioc->pdir_base[off] &= ~(0x80000000000000FFULL);
878 #else
879  /*
880  ** If we want to maintain the PDIR as valid, put in
881  ** the spill page so devices prefetching won't
882  ** cause a hard fail.
883  */
884  ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page);
885 #endif
886  } else {
887  u32 t = get_iovp_order(byte_cnt) + iovp_shift;
888 
889  iovp |= t;
890  ASSERT(t <= 31); /* 2GB! Max value of "size" field */
891 
892  do {
893  /* verify this pdir entry is enabled */
894  ASSERT(ioc->pdir_base[off] >> 63);
895 #ifndef FULL_VALID_PDIR
896  /* clear I/O Pdir entry "valid" bit first */
897  ioc->pdir_base[off] &= ~(0x80000000000000FFULL);
898 #else
899  ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page);
900 #endif
901  off++;
902  byte_cnt -= iovp_size;
903  } while (byte_cnt > 0);
904  }
905 
906  WRITE_REG(iovp | ioc->ibase, ioc->ioc_hpa+IOC_PCOM);
907 }
908 
919 static dma_addr_t sba_map_page(struct device *dev, struct page *page,
920  unsigned long poff, size_t size,
921  enum dma_data_direction dir,
922  struct dma_attrs *attrs)
923 {
924  struct ioc *ioc;
925  void *addr = page_address(page) + poff;
926  dma_addr_t iovp;
928  u64 *pdir_start;
929  int pide;
930 #ifdef ASSERT_PDIR_SANITY
931  unsigned long flags;
932 #endif
933 #ifdef ALLOW_IOV_BYPASS
934  unsigned long pci_addr = virt_to_phys(addr);
935 #endif
936 
937 #ifdef ALLOW_IOV_BYPASS
938  ASSERT(to_pci_dev(dev)->dma_mask);
939  /*
940  ** Check if the PCI device can DMA to ptr... if so, just return ptr
941  */
942  if (likely((pci_addr & ~to_pci_dev(dev)->dma_mask) == 0)) {
943  /*
944  ** Device is bit capable of DMA'ing to the buffer...
945  ** just return the PCI address of ptr
946  */
947  DBG_BYPASS("sba_map_single_attrs() bypass mask/addr: "
948  "0x%lx/0x%lx\n",
949  to_pci_dev(dev)->dma_mask, pci_addr);
950  return pci_addr;
951  }
952 #endif
953  ioc = GET_IOC(dev);
954  ASSERT(ioc);
955 
956  prefetch(ioc->res_hint);
957 
958  ASSERT(size > 0);
959  ASSERT(size <= DMA_CHUNK_SIZE);
960 
961  /* save offset bits */
962  offset = ((dma_addr_t) (long) addr) & ~iovp_mask;
963 
964  /* round up to nearest iovp_size */
965  size = (size + offset + ~iovp_mask) & iovp_mask;
966 
967 #ifdef ASSERT_PDIR_SANITY
968  spin_lock_irqsave(&ioc->res_lock, flags);
969  if (sba_check_pdir(ioc,"Check before sba_map_single_attrs()"))
970  panic("Sanity check failed");
971  spin_unlock_irqrestore(&ioc->res_lock, flags);
972 #endif
973 
974  pide = sba_alloc_range(ioc, dev, size);
975  if (pide < 0)
976  return 0;
977 
978  iovp = (dma_addr_t) pide << iovp_shift;
979 
980  DBG_RUN("%s() 0x%p -> 0x%lx\n", __func__, addr, (long) iovp | offset);
981 
982  pdir_start = &(ioc->pdir_base[pide]);
983 
984  while (size > 0) {
985  ASSERT(((u8 *)pdir_start)[7] == 0); /* verify availability */
986  sba_io_pdir_entry(pdir_start, (unsigned long) addr);
987 
988  DBG_RUN(" pdir 0x%p %lx\n", pdir_start, *pdir_start);
989 
990  addr += iovp_size;
991  size -= iovp_size;
992  pdir_start++;
993  }
994  /* force pdir update */
995  wmb();
996 
997  /* form complete address */
998 #ifdef ASSERT_PDIR_SANITY
999  spin_lock_irqsave(&ioc->res_lock, flags);
1000  sba_check_pdir(ioc,"Check after sba_map_single_attrs()");
1001  spin_unlock_irqrestore(&ioc->res_lock, flags);
1002 #endif
1003  return SBA_IOVA(ioc, iovp, offset);
1004 }
1005 
1006 static dma_addr_t sba_map_single_attrs(struct device *dev, void *addr,
1007  size_t size, enum dma_data_direction dir,
1008  struct dma_attrs *attrs)
1009 {
1010  return sba_map_page(dev, virt_to_page(addr),
1011  (unsigned long)addr & ~PAGE_MASK, size, dir, attrs);
1012 }
1013 
1014 #ifdef ENABLE_MARK_CLEAN
1015 static SBA_INLINE void
1016 sba_mark_clean(struct ioc *ioc, dma_addr_t iova, size_t size)
1017 {
1018  u32 iovp = (u32) SBA_IOVP(ioc,iova);
1019  int off = PDIR_INDEX(iovp);
1020  void *addr;
1021 
1022  if (size <= iovp_size) {
1023  addr = phys_to_virt(ioc->pdir_base[off] &
1024  ~0xE000000000000FFFULL);
1025  mark_clean(addr, size);
1026  } else {
1027  do {
1028  addr = phys_to_virt(ioc->pdir_base[off] &
1029  ~0xE000000000000FFFULL);
1030  mark_clean(addr, min(size, iovp_size));
1031  off++;
1032  size -= iovp_size;
1033  } while (size > 0);
1034  }
1035 }
1036 #endif
1037 
1048 static void sba_unmap_page(struct device *dev, dma_addr_t iova, size_t size,
1049  enum dma_data_direction dir, struct dma_attrs *attrs)
1050 {
1051  struct ioc *ioc;
1052 #if DELAYED_RESOURCE_CNT > 0
1053  struct sba_dma_pair *d;
1054 #endif
1055  unsigned long flags;
1057 
1058  ioc = GET_IOC(dev);
1059  ASSERT(ioc);
1060 
1061 #ifdef ALLOW_IOV_BYPASS
1062  if (likely((iova & ioc->imask) != ioc->ibase)) {
1063  /*
1064  ** Address does not fall w/in IOVA, must be bypassing
1065  */
1066  DBG_BYPASS("sba_unmap_single_attrs() bypass addr: 0x%lx\n",
1067  iova);
1068 
1069 #ifdef ENABLE_MARK_CLEAN
1070  if (dir == DMA_FROM_DEVICE) {
1071  mark_clean(phys_to_virt(iova), size);
1072  }
1073 #endif
1074  return;
1075  }
1076 #endif
1077  offset = iova & ~iovp_mask;
1078 
1079  DBG_RUN("%s() iovp 0x%lx/%x\n", __func__, (long) iova, size);
1080 
1081  iova ^= offset; /* clear offset bits */
1082  size += offset;
1083  size = ROUNDUP(size, iovp_size);
1084 
1085 #ifdef ENABLE_MARK_CLEAN
1086  if (dir == DMA_FROM_DEVICE)
1087  sba_mark_clean(ioc, iova, size);
1088 #endif
1089 
1090 #if DELAYED_RESOURCE_CNT > 0
1091  spin_lock_irqsave(&ioc->saved_lock, flags);
1092  d = &(ioc->saved[ioc->saved_cnt]);
1093  d->iova = iova;
1094  d->size = size;
1095  if (unlikely(++(ioc->saved_cnt) >= DELAYED_RESOURCE_CNT)) {
1096  int cnt = ioc->saved_cnt;
1097  spin_lock(&ioc->res_lock);
1098  while (cnt--) {
1099  sba_mark_invalid(ioc, d->iova, d->size);
1100  sba_free_range(ioc, d->iova, d->size);
1101  d--;
1102  }
1103  ioc->saved_cnt = 0;
1104  READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */
1105  spin_unlock(&ioc->res_lock);
1106  }
1107  spin_unlock_irqrestore(&ioc->saved_lock, flags);
1108 #else /* DELAYED_RESOURCE_CNT == 0 */
1109  spin_lock_irqsave(&ioc->res_lock, flags);
1110  sba_mark_invalid(ioc, iova, size);
1111  sba_free_range(ioc, iova, size);
1112  READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */
1113  spin_unlock_irqrestore(&ioc->res_lock, flags);
1114 #endif /* DELAYED_RESOURCE_CNT == 0 */
1115 }
1116 
1117 void sba_unmap_single_attrs(struct device *dev, dma_addr_t iova, size_t size,
1118  enum dma_data_direction dir, struct dma_attrs *attrs)
1119 {
1120  sba_unmap_page(dev, iova, size, dir, attrs);
1121 }
1122 
1131 static void *
1132 sba_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
1133  gfp_t flags, struct dma_attrs *attrs)
1134 {
1135  struct ioc *ioc;
1136  void *addr;
1137 
1138  ioc = GET_IOC(dev);
1139  ASSERT(ioc);
1140 
1141 #ifdef CONFIG_NUMA
1142  {
1143  struct page *page;
1144  page = alloc_pages_exact_node(ioc->node == MAX_NUMNODES ?
1145  numa_node_id() : ioc->node, flags,
1146  get_order(size));
1147 
1148  if (unlikely(!page))
1149  return NULL;
1150 
1151  addr = page_address(page);
1152  }
1153 #else
1154  addr = (void *) __get_free_pages(flags, get_order(size));
1155 #endif
1156  if (unlikely(!addr))
1157  return NULL;
1158 
1159  memset(addr, 0, size);
1160  *dma_handle = virt_to_phys(addr);
1161 
1162 #ifdef ALLOW_IOV_BYPASS
1163  ASSERT(dev->coherent_dma_mask);
1164  /*
1165  ** Check if the PCI device can DMA to ptr... if so, just return ptr
1166  */
1167  if (likely((*dma_handle & ~dev->coherent_dma_mask) == 0)) {
1168  DBG_BYPASS("sba_alloc_coherent() bypass mask/addr: 0x%lx/0x%lx\n",
1169  dev->coherent_dma_mask, *dma_handle);
1170 
1171  return addr;
1172  }
1173 #endif
1174 
1175  /*
1176  * If device can't bypass or bypass is disabled, pass the 32bit fake
1177  * device to map single to get an iova mapping.
1178  */
1179  *dma_handle = sba_map_single_attrs(&ioc->sac_only_dev->dev, addr,
1180  size, 0, NULL);
1181 
1182  return addr;
1183 }
1184 
1185 
1195 static void sba_free_coherent(struct device *dev, size_t size, void *vaddr,
1196  dma_addr_t dma_handle, struct dma_attrs *attrs)
1197 {
1198  sba_unmap_single_attrs(dev, dma_handle, size, 0, NULL);
1199  free_pages((unsigned long) vaddr, get_order(size));
1200 }
1201 
1202 
1203 /*
1204 ** Since 0 is a valid pdir_base index value, can't use that
1205 ** to determine if a value is valid or not. Use a flag to indicate
1206 ** the SG list entry contains a valid pdir index.
1207 */
1208 #define PIDE_FLAG 0x1UL
1209 
1210 #ifdef DEBUG_LARGE_SG_ENTRIES
1211 int dump_run_sg = 0;
1212 #endif
1213 
1214 
1225 static SBA_INLINE int
1226 sba_fill_pdir(
1227  struct ioc *ioc,
1228  struct scatterlist *startsg,
1229  int nents)
1230 {
1231  struct scatterlist *dma_sg = startsg; /* pointer to current DMA */
1232  int n_mappings = 0;
1233  u64 *pdirp = NULL;
1234  unsigned long dma_offset = 0;
1235 
1236  while (nents-- > 0) {
1237  int cnt = startsg->dma_length;
1238  startsg->dma_length = 0;
1239 
1240 #ifdef DEBUG_LARGE_SG_ENTRIES
1241  if (dump_run_sg)
1242  printk(" %2d : %08lx/%05x %p\n",
1243  nents, startsg->dma_address, cnt,
1244  sba_sg_address(startsg));
1245 #else
1246  DBG_RUN_SG(" %d : %08lx/%05x %p\n",
1247  nents, startsg->dma_address, cnt,
1248  sba_sg_address(startsg));
1249 #endif
1250  /*
1251  ** Look for the start of a new DMA stream
1252  */
1253  if (startsg->dma_address & PIDE_FLAG) {
1254  u32 pide = startsg->dma_address & ~PIDE_FLAG;
1255  dma_offset = (unsigned long) pide & ~iovp_mask;
1256  startsg->dma_address = 0;
1257  if (n_mappings)
1258  dma_sg = sg_next(dma_sg);
1259  dma_sg->dma_address = pide | ioc->ibase;
1260  pdirp = &(ioc->pdir_base[pide >> iovp_shift]);
1261  n_mappings++;
1262  }
1263 
1264  /*
1265  ** Look for a VCONTIG chunk
1266  */
1267  if (cnt) {
1268  unsigned long vaddr = (unsigned long) sba_sg_address(startsg);
1269  ASSERT(pdirp);
1270 
1271  /* Since multiple Vcontig blocks could make up
1272  ** one DMA stream, *add* cnt to dma_len.
1273  */
1274  dma_sg->dma_length += cnt;
1275  cnt += dma_offset;
1276  dma_offset=0; /* only want offset on first chunk */
1277  cnt = ROUNDUP(cnt, iovp_size);
1278  do {
1279  sba_io_pdir_entry(pdirp, vaddr);
1280  vaddr += iovp_size;
1281  cnt -= iovp_size;
1282  pdirp++;
1283  } while (cnt > 0);
1284  }
1285  startsg = sg_next(startsg);
1286  }
1287  /* force pdir update */
1288  wmb();
1289 
1290 #ifdef DEBUG_LARGE_SG_ENTRIES
1291  dump_run_sg = 0;
1292 #endif
1293  return(n_mappings);
1294 }
1295 
1296 
1297 /*
1298 ** Two address ranges are DMA contiguous *iff* "end of prev" and
1299 ** "start of next" are both on an IOV page boundary.
1300 **
1301 ** (shift left is a quick trick to mask off upper bits)
1302 */
1303 #define DMA_CONTIG(__X, __Y) \
1304  (((((unsigned long) __X) | ((unsigned long) __Y)) << (BITS_PER_LONG - iovp_shift)) == 0UL)
1305 
1306 
1321 static SBA_INLINE int
1322 sba_coalesce_chunks(struct ioc *ioc, struct device *dev,
1323  struct scatterlist *startsg,
1324  int nents)
1325 {
1326  struct scatterlist *vcontig_sg; /* VCONTIG chunk head */
1327  unsigned long vcontig_len; /* len of VCONTIG chunk */
1328  unsigned long vcontig_end;
1329  struct scatterlist *dma_sg; /* next DMA stream head */
1330  unsigned long dma_offset, dma_len; /* start/len of DMA stream */
1331  int n_mappings = 0;
1332  unsigned int max_seg_size = dma_get_max_seg_size(dev);
1333  int idx;
1334 
1335  while (nents > 0) {
1336  unsigned long vaddr = (unsigned long) sba_sg_address(startsg);
1337 
1338  /*
1339  ** Prepare for first/next DMA stream
1340  */
1341  dma_sg = vcontig_sg = startsg;
1342  dma_len = vcontig_len = vcontig_end = startsg->length;
1343  vcontig_end += vaddr;
1344  dma_offset = vaddr & ~iovp_mask;
1345 
1346  /* PARANOID: clear entries */
1347  startsg->dma_address = startsg->dma_length = 0;
1348 
1349  /*
1350  ** This loop terminates one iteration "early" since
1351  ** it's always looking one "ahead".
1352  */
1353  while (--nents > 0) {
1354  unsigned long vaddr; /* tmp */
1355 
1356  startsg = sg_next(startsg);
1357 
1358  /* PARANOID */
1359  startsg->dma_address = startsg->dma_length = 0;
1360 
1361  /* catch brokenness in SCSI layer */
1362  ASSERT(startsg->length <= DMA_CHUNK_SIZE);
1363 
1364  /*
1365  ** First make sure current dma stream won't
1366  ** exceed DMA_CHUNK_SIZE if we coalesce the
1367  ** next entry.
1368  */
1369  if (((dma_len + dma_offset + startsg->length + ~iovp_mask) & iovp_mask)
1370  > DMA_CHUNK_SIZE)
1371  break;
1372 
1373  if (dma_len + startsg->length > max_seg_size)
1374  break;
1375 
1376  /*
1377  ** Then look for virtually contiguous blocks.
1378  **
1379  ** append the next transaction?
1380  */
1381  vaddr = (unsigned long) sba_sg_address(startsg);
1382  if (vcontig_end == vaddr)
1383  {
1384  vcontig_len += startsg->length;
1385  vcontig_end += startsg->length;
1386  dma_len += startsg->length;
1387  continue;
1388  }
1389 
1390 #ifdef DEBUG_LARGE_SG_ENTRIES
1391  dump_run_sg = (vcontig_len > iovp_size);
1392 #endif
1393 
1394  /*
1395  ** Not virtually contiguous.
1396  ** Terminate prev chunk.
1397  ** Start a new chunk.
1398  **
1399  ** Once we start a new VCONTIG chunk, dma_offset
1400  ** can't change. And we need the offset from the first
1401  ** chunk - not the last one. Ergo Successive chunks
1402  ** must start on page boundaries and dove tail
1403  ** with it's predecessor.
1404  */
1405  vcontig_sg->dma_length = vcontig_len;
1406 
1407  vcontig_sg = startsg;
1408  vcontig_len = startsg->length;
1409 
1410  /*
1411  ** 3) do the entries end/start on page boundaries?
1412  ** Don't update vcontig_end until we've checked.
1413  */
1414  if (DMA_CONTIG(vcontig_end, vaddr))
1415  {
1416  vcontig_end = vcontig_len + vaddr;
1417  dma_len += vcontig_len;
1418  continue;
1419  } else {
1420  break;
1421  }
1422  }
1423 
1424  /*
1425  ** End of DMA Stream
1426  ** Terminate last VCONTIG block.
1427  ** Allocate space for DMA stream.
1428  */
1429  vcontig_sg->dma_length = vcontig_len;
1430  dma_len = (dma_len + dma_offset + ~iovp_mask) & iovp_mask;
1431  ASSERT(dma_len <= DMA_CHUNK_SIZE);
1432  idx = sba_alloc_range(ioc, dev, dma_len);
1433  if (idx < 0) {
1434  dma_sg->dma_length = 0;
1435  return -1;
1436  }
1437  dma_sg->dma_address = (dma_addr_t)(PIDE_FLAG | (idx << iovp_shift)
1438  | dma_offset);
1439  n_mappings++;
1440  }
1441 
1442  return n_mappings;
1443 }
1444 
1445 static void sba_unmap_sg_attrs(struct device *dev, struct scatterlist *sglist,
1446  int nents, enum dma_data_direction dir,
1447  struct dma_attrs *attrs);
1458 static int sba_map_sg_attrs(struct device *dev, struct scatterlist *sglist,
1459  int nents, enum dma_data_direction dir,
1460  struct dma_attrs *attrs)
1461 {
1462  struct ioc *ioc;
1463  int coalesced, filled = 0;
1464 #ifdef ASSERT_PDIR_SANITY
1465  unsigned long flags;
1466 #endif
1467 #ifdef ALLOW_IOV_BYPASS_SG
1468  struct scatterlist *sg;
1469 #endif
1470 
1471  DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
1472  ioc = GET_IOC(dev);
1473  ASSERT(ioc);
1474 
1475 #ifdef ALLOW_IOV_BYPASS_SG
1476  ASSERT(to_pci_dev(dev)->dma_mask);
1477  if (likely((ioc->dma_mask & ~to_pci_dev(dev)->dma_mask) == 0)) {
1478  for_each_sg(sglist, sg, nents, filled) {
1479  sg->dma_length = sg->length;
1481  }
1482  return filled;
1483  }
1484 #endif
1485  /* Fast path single entry scatterlists. */
1486  if (nents == 1) {
1487  sglist->dma_length = sglist->length;
1488  sglist->dma_address = sba_map_single_attrs(dev, sba_sg_address(sglist), sglist->length, dir, attrs);
1489  return 1;
1490  }
1491 
1492 #ifdef ASSERT_PDIR_SANITY
1493  spin_lock_irqsave(&ioc->res_lock, flags);
1494  if (sba_check_pdir(ioc,"Check before sba_map_sg_attrs()"))
1495  {
1496  sba_dump_sg(ioc, sglist, nents);
1497  panic("Check before sba_map_sg_attrs()");
1498  }
1499  spin_unlock_irqrestore(&ioc->res_lock, flags);
1500 #endif
1501 
1502  prefetch(ioc->res_hint);
1503 
1504  /*
1505  ** First coalesce the chunks and allocate I/O pdir space
1506  **
1507  ** If this is one DMA stream, we can properly map using the
1508  ** correct virtual address associated with each DMA page.
1509  ** w/o this association, we wouldn't have coherent DMA!
1510  ** Access to the virtual address is what forces a two pass algorithm.
1511  */
1512  coalesced = sba_coalesce_chunks(ioc, dev, sglist, nents);
1513  if (coalesced < 0) {
1514  sba_unmap_sg_attrs(dev, sglist, nents, dir, attrs);
1515  return 0;
1516  }
1517 
1518  /*
1519  ** Program the I/O Pdir
1520  **
1521  ** map the virtual addresses to the I/O Pdir
1522  ** o dma_address will contain the pdir index
1523  ** o dma_len will contain the number of bytes to map
1524  ** o address contains the virtual address.
1525  */
1526  filled = sba_fill_pdir(ioc, sglist, nents);
1527 
1528 #ifdef ASSERT_PDIR_SANITY
1529  spin_lock_irqsave(&ioc->res_lock, flags);
1530  if (sba_check_pdir(ioc,"Check after sba_map_sg_attrs()"))
1531  {
1532  sba_dump_sg(ioc, sglist, nents);
1533  panic("Check after sba_map_sg_attrs()\n");
1534  }
1535  spin_unlock_irqrestore(&ioc->res_lock, flags);
1536 #endif
1537 
1538  ASSERT(coalesced == filled);
1539  DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
1540 
1541  return filled;
1542 }
1543 
1554 static void sba_unmap_sg_attrs(struct device *dev, struct scatterlist *sglist,
1555  int nents, enum dma_data_direction dir,
1556  struct dma_attrs *attrs)
1557 {
1558 #ifdef ASSERT_PDIR_SANITY
1559  struct ioc *ioc;
1560  unsigned long flags;
1561 #endif
1562 
1563  DBG_RUN_SG("%s() START %d entries, %p,%x\n",
1564  __func__, nents, sba_sg_address(sglist), sglist->length);
1565 
1566 #ifdef ASSERT_PDIR_SANITY
1567  ioc = GET_IOC(dev);
1568  ASSERT(ioc);
1569 
1570  spin_lock_irqsave(&ioc->res_lock, flags);
1571  sba_check_pdir(ioc,"Check before sba_unmap_sg_attrs()");
1572  spin_unlock_irqrestore(&ioc->res_lock, flags);
1573 #endif
1574 
1575  while (nents && sglist->dma_length) {
1576 
1577  sba_unmap_single_attrs(dev, sglist->dma_address,
1578  sglist->dma_length, dir, attrs);
1579  sglist = sg_next(sglist);
1580  nents--;
1581  }
1582 
1583  DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents);
1584 
1585 #ifdef ASSERT_PDIR_SANITY
1586  spin_lock_irqsave(&ioc->res_lock, flags);
1587  sba_check_pdir(ioc,"Check after sba_unmap_sg_attrs()");
1588  spin_unlock_irqrestore(&ioc->res_lock, flags);
1589 #endif
1590 
1591 }
1592 
1593 /**************************************************************
1594 *
1595 * Initialization and claim
1596 *
1597 ***************************************************************/
1598 
1599 static void __init
1600 ioc_iova_init(struct ioc *ioc)
1601 {
1602  int tcnfg;
1603  int agp_found = 0;
1604  struct pci_dev *device = NULL;
1605 #ifdef FULL_VALID_PDIR
1606  unsigned long index;
1607 #endif
1608 
1609  /*
1610  ** Firmware programs the base and size of a "safe IOVA space"
1611  ** (one that doesn't overlap memory or LMMIO space) in the
1612  ** IBASE and IMASK registers.
1613  */
1614  ioc->ibase = READ_REG(ioc->ioc_hpa + IOC_IBASE) & ~0x1UL;
1615  ioc->imask = READ_REG(ioc->ioc_hpa + IOC_IMASK) | 0xFFFFFFFF00000000UL;
1616 
1617  ioc->iov_size = ~ioc->imask + 1;
1618 
1619  DBG_INIT("%s() hpa %p IOV base 0x%lx mask 0x%lx (%dMB)\n",
1620  __func__, ioc->ioc_hpa, ioc->ibase, ioc->imask,
1621  ioc->iov_size >> 20);
1622 
1623  switch (iovp_size) {
1624  case 4*1024: tcnfg = 0; break;
1625  case 8*1024: tcnfg = 1; break;
1626  case 16*1024: tcnfg = 2; break;
1627  case 64*1024: tcnfg = 3; break;
1628  default:
1629  panic(PFX "Unsupported IOTLB page size %ldK",
1630  iovp_size >> 10);
1631  break;
1632  }
1633  WRITE_REG(tcnfg, ioc->ioc_hpa + IOC_TCNFG);
1634 
1635  ioc->pdir_size = (ioc->iov_size / iovp_size) * PDIR_ENTRY_SIZE;
1636  ioc->pdir_base = (void *) __get_free_pages(GFP_KERNEL,
1637  get_order(ioc->pdir_size));
1638  if (!ioc->pdir_base)
1639  panic(PFX "Couldn't allocate I/O Page Table\n");
1640 
1641  memset(ioc->pdir_base, 0, ioc->pdir_size);
1642 
1643  DBG_INIT("%s() IOV page size %ldK pdir %p size %x\n", __func__,
1644  iovp_size >> 10, ioc->pdir_base, ioc->pdir_size);
1645 
1646  ASSERT(ALIGN((unsigned long) ioc->pdir_base, 4*1024) == (unsigned long) ioc->pdir_base);
1648 
1649  /*
1650  ** If an AGP device is present, only use half of the IOV space
1651  ** for PCI DMA. Unfortunately we can't know ahead of time
1652  ** whether GART support will actually be used, for now we
1653  ** can just key on an AGP device found in the system.
1654  ** We program the next pdir index after we stop w/ a key for
1655  ** the GART code to handshake on.
1656  */
1657  for_each_pci_dev(device)
1658  agp_found |= pci_find_capability(device, PCI_CAP_ID_AGP);
1659 
1660  if (agp_found && reserve_sba_gart) {
1661  printk(KERN_INFO PFX "reserving %dMb of IOVA space at 0x%lx for agpgart\n",
1662  ioc->iov_size/2 >> 20, ioc->ibase + ioc->iov_size/2);
1663  ioc->pdir_size /= 2;
1664  ((u64 *)ioc->pdir_base)[PDIR_INDEX(ioc->iov_size/2)] = ZX1_SBA_IOMMU_COOKIE;
1665  }
1666 #ifdef FULL_VALID_PDIR
1667  /*
1668  ** Check to see if the spill page has been allocated, we don't need more than
1669  ** one across multiple SBAs.
1670  */
1671  if (!prefetch_spill_page) {
1672  char *spill_poison = "SBAIOMMU POISON";
1673  int poison_size = 16;
1674  void *poison_addr, *addr;
1675 
1676  addr = (void *)__get_free_pages(GFP_KERNEL, get_order(iovp_size));
1677  if (!addr)
1678  panic(PFX "Couldn't allocate PDIR spill page\n");
1679 
1680  poison_addr = addr;
1681  for ( ; (u64) poison_addr < addr + iovp_size; poison_addr += poison_size)
1682  memcpy(poison_addr, spill_poison, poison_size);
1683 
1684  prefetch_spill_page = virt_to_phys(addr);
1685 
1686  DBG_INIT("%s() prefetch spill addr: 0x%lx\n", __func__, prefetch_spill_page);
1687  }
1688  /*
1689  ** Set all the PDIR entries valid w/ the spill page as the target
1690  */
1691  for (index = 0 ; index < (ioc->pdir_size / PDIR_ENTRY_SIZE) ; index++)
1692  ((u64 *)ioc->pdir_base)[index] = (0x80000000000000FF | prefetch_spill_page);
1693 #endif
1694 
1695  /* Clear I/O TLB of any possible entries */
1696  WRITE_REG(ioc->ibase | (get_iovp_order(ioc->iov_size) + iovp_shift), ioc->ioc_hpa + IOC_PCOM);
1697  READ_REG(ioc->ioc_hpa + IOC_PCOM);
1698 
1699  /* Enable IOVA translation */
1700  WRITE_REG(ioc->ibase | 1, ioc->ioc_hpa + IOC_IBASE);
1701  READ_REG(ioc->ioc_hpa + IOC_IBASE);
1702 }
1703 
1704 static void __init
1705 ioc_resource_init(struct ioc *ioc)
1706 {
1707  spin_lock_init(&ioc->res_lock);
1708 #if DELAYED_RESOURCE_CNT > 0
1709  spin_lock_init(&ioc->saved_lock);
1710 #endif
1711 
1712  /* resource map size dictated by pdir_size */
1713  ioc->res_size = ioc->pdir_size / PDIR_ENTRY_SIZE; /* entries */
1714  ioc->res_size >>= 3; /* convert bit count to byte count */
1715  DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
1716 
1717  ioc->res_map = (char *) __get_free_pages(GFP_KERNEL,
1718  get_order(ioc->res_size));
1719  if (!ioc->res_map)
1720  panic(PFX "Couldn't allocate resource map\n");
1721 
1722  memset(ioc->res_map, 0, ioc->res_size);
1723  /* next available IOVP - circular search */
1724  ioc->res_hint = (unsigned long *) ioc->res_map;
1725 
1726 #ifdef ASSERT_PDIR_SANITY
1727  /* Mark first bit busy - ie no IOVA 0 */
1728  ioc->res_map[0] = 0x1;
1729  ioc->pdir_base[0] = 0x8000000000000000ULL | ZX1_SBA_IOMMU_COOKIE;
1730 #endif
1731 #ifdef FULL_VALID_PDIR
1732  /* Mark the last resource used so we don't prefetch beyond IOVA space */
1733  ioc->res_map[ioc->res_size - 1] |= 0x80UL; /* res_map is chars */
1734  ioc->pdir_base[(ioc->pdir_size / PDIR_ENTRY_SIZE) - 1] = (0x80000000000000FF
1735  | prefetch_spill_page);
1736 #endif
1737 
1738  DBG_INIT("%s() res_map %x %p\n", __func__,
1739  ioc->res_size, (void *) ioc->res_map);
1740 }
1741 
1742 static void __init
1743 ioc_sac_init(struct ioc *ioc)
1744 {
1745  struct pci_dev *sac = NULL;
1746  struct pci_controller *controller = NULL;
1747 
1748  /*
1749  * pci_alloc_coherent() must return a DMA address which is
1750  * SAC (single address cycle) addressable, so allocate a
1751  * pseudo-device to enforce that.
1752  */
1753  sac = kzalloc(sizeof(*sac), GFP_KERNEL);
1754  if (!sac)
1755  panic(PFX "Couldn't allocate struct pci_dev");
1756 
1757  controller = kzalloc(sizeof(*controller), GFP_KERNEL);
1758  if (!controller)
1759  panic(PFX "Couldn't allocate struct pci_controller");
1760 
1761  controller->iommu = ioc;
1762  sac->sysdata = controller;
1763  sac->dma_mask = 0xFFFFFFFFUL;
1764 #ifdef CONFIG_PCI
1765  sac->dev.bus = &pci_bus_type;
1766 #endif
1767  ioc->sac_only_dev = sac;
1768 }
1769 
1770 static void __init
1771 ioc_zx1_init(struct ioc *ioc)
1772 {
1773  unsigned long rope_config;
1774  unsigned int i;
1775 
1776  if (ioc->rev < 0x20)
1777  panic(PFX "IOC 2.0 or later required for IOMMU support\n");
1778 
1779  /* 38 bit memory controller + extra bit for range displaced by MMIO */
1780  ioc->dma_mask = (0x1UL << 39) - 1;
1781 
1782  /*
1783  ** Clear ROPE(N)_CONFIG AO bit.
1784  ** Disables "NT Ordering" (~= !"Relaxed Ordering")
1785  ** Overrides bit 1 in DMA Hint Sets.
1786  ** Improves netperf UDP_STREAM by ~10% for tg3 on bcm5701.
1787  */
1788  for (i=0; i<(8*8); i+=8) {
1789  rope_config = READ_REG(ioc->ioc_hpa + IOC_ROPE0_CFG + i);
1790  rope_config &= ~IOC_ROPE_AO;
1791  WRITE_REG(rope_config, ioc->ioc_hpa + IOC_ROPE0_CFG + i);
1792  }
1793 }
1794 
1795 typedef void (initfunc)(struct ioc *);
1796 
1797 struct ioc_iommu {
1799  char *name;
1801 };
1802 
1803 static struct ioc_iommu ioc_iommu_info[] __initdata = {
1804  { ZX1_IOC_ID, "zx1", ioc_zx1_init },
1805  { ZX2_IOC_ID, "zx2", NULL },
1806  { SX1000_IOC_ID, "sx1000", NULL },
1807  { SX2000_IOC_ID, "sx2000", NULL },
1808 };
1809 
1810 static struct ioc * __init
1811 ioc_init(unsigned long hpa, void *handle)
1812 {
1813  struct ioc *ioc;
1814  struct ioc_iommu *info;
1815 
1816  ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
1817  if (!ioc)
1818  return NULL;
1819 
1820  ioc->next = ioc_list;
1821  ioc_list = ioc;
1822 
1823  ioc->handle = handle;
1824  ioc->ioc_hpa = ioremap(hpa, 0x1000);
1825 
1826  ioc->func_id = READ_REG(ioc->ioc_hpa + IOC_FUNC_ID);
1827  ioc->rev = READ_REG(ioc->ioc_hpa + IOC_FCLASS) & 0xFFUL;
1828  ioc->dma_mask = 0xFFFFFFFFFFFFFFFFUL; /* conservative */
1829 
1830  for (info = ioc_iommu_info; info < ioc_iommu_info + ARRAY_SIZE(ioc_iommu_info); info++) {
1831  if (ioc->func_id == info->func_id) {
1832  ioc->name = info->name;
1833  if (info->init)
1834  (info->init)(ioc);
1835  }
1836  }
1837 
1838  iovp_size = (1 << iovp_shift);
1839  iovp_mask = ~(iovp_size - 1);
1840 
1841  DBG_INIT("%s: PAGE_SIZE %ldK, iovp_size %ldK\n", __func__,
1842  PAGE_SIZE >> 10, iovp_size >> 10);
1843 
1844  if (!ioc->name) {
1845  ioc->name = kmalloc(24, GFP_KERNEL);
1846  if (ioc->name)
1847  sprintf((char *) ioc->name, "Unknown (%04x:%04x)",
1848  ioc->func_id & 0xFFFF, (ioc->func_id >> 16) & 0xFFFF);
1849  else
1850  ioc->name = "Unknown";
1851  }
1852 
1853  ioc_iova_init(ioc);
1854  ioc_resource_init(ioc);
1855  ioc_sac_init(ioc);
1856 
1857  if ((long) ~iovp_mask > (long) ia64_max_iommu_merge_mask)
1858  ia64_max_iommu_merge_mask = ~iovp_mask;
1859 
1861  "%s %d.%d HPA 0x%lx IOVA space %dMb at 0x%lx\n",
1862  ioc->name, (ioc->rev >> 4) & 0xF, ioc->rev & 0xF,
1863  hpa, ioc->iov_size >> 20, ioc->ibase);
1864 
1865  return ioc;
1866 }
1867 
1868 
1869 
1870 /**************************************************************************
1871 **
1872 ** SBA initialization code (HW and SW)
1873 **
1874 ** o identify SBA chip itself
1875 ** o FIXME: initialize DMA hints for reasonable defaults
1876 **
1877 **************************************************************************/
1878 
1879 #ifdef CONFIG_PROC_FS
1880 static void *
1881 ioc_start(struct seq_file *s, loff_t *pos)
1882 {
1883  struct ioc *ioc;
1884  loff_t n = *pos;
1885 
1886  for (ioc = ioc_list; ioc; ioc = ioc->next)
1887  if (!n--)
1888  return ioc;
1889 
1890  return NULL;
1891 }
1892 
1893 static void *
1894 ioc_next(struct seq_file *s, void *v, loff_t *pos)
1895 {
1896  struct ioc *ioc = v;
1897 
1898  ++*pos;
1899  return ioc->next;
1900 }
1901 
1902 static void
1903 ioc_stop(struct seq_file *s, void *v)
1904 {
1905 }
1906 
1907 static int
1908 ioc_show(struct seq_file *s, void *v)
1909 {
1910  struct ioc *ioc = v;
1911  unsigned long *res_ptr = (unsigned long *)ioc->res_map;
1912  int i, used = 0;
1913 
1914  seq_printf(s, "Hewlett Packard %s IOC rev %d.%d\n",
1915  ioc->name, ((ioc->rev >> 4) & 0xF), (ioc->rev & 0xF));
1916 #ifdef CONFIG_NUMA
1917  if (ioc->node != MAX_NUMNODES)
1918  seq_printf(s, "NUMA node : %d\n", ioc->node);
1919 #endif
1920  seq_printf(s, "IOVA size : %ld MB\n", ((ioc->pdir_size >> 3) * iovp_size)/(1024*1024));
1921  seq_printf(s, "IOVA page size : %ld kb\n", iovp_size/1024);
1922 
1923  for (i = 0; i < (ioc->res_size / sizeof(unsigned long)); ++i, ++res_ptr)
1924  used += hweight64(*res_ptr);
1925 
1926  seq_printf(s, "PDIR size : %d entries\n", ioc->pdir_size >> 3);
1927  seq_printf(s, "PDIR used : %d entries\n", used);
1928 
1929 #ifdef PDIR_SEARCH_TIMING
1930  {
1931  unsigned long i = 0, avg = 0, min, max;
1932  min = max = ioc->avg_search[0];
1933  for (i = 0; i < SBA_SEARCH_SAMPLE; i++) {
1934  avg += ioc->avg_search[i];
1935  if (ioc->avg_search[i] > max) max = ioc->avg_search[i];
1936  if (ioc->avg_search[i] < min) min = ioc->avg_search[i];
1937  }
1938  avg /= SBA_SEARCH_SAMPLE;
1939  seq_printf(s, "Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles/IOVA page)\n",
1940  min, avg, max);
1941  }
1942 #endif
1943 #ifndef ALLOW_IOV_BYPASS
1944  seq_printf(s, "IOVA bypass disabled\n");
1945 #endif
1946  return 0;
1947 }
1948 
1949 static const struct seq_operations ioc_seq_ops = {
1950  .start = ioc_start,
1951  .next = ioc_next,
1952  .stop = ioc_stop,
1953  .show = ioc_show
1954 };
1955 
1956 static int
1957 ioc_open(struct inode *inode, struct file *file)
1958 {
1959  return seq_open(file, &ioc_seq_ops);
1960 }
1961 
1962 static const struct file_operations ioc_fops = {
1963  .open = ioc_open,
1964  .read = seq_read,
1965  .llseek = seq_lseek,
1966  .release = seq_release
1967 };
1968 
1969 static void __init
1970 ioc_proc_init(void)
1971 {
1972  struct proc_dir_entry *dir;
1973 
1974  dir = proc_mkdir("bus/mckinley", NULL);
1975  if (!dir)
1976  return;
1977 
1978  proc_create(ioc_list->name, 0, dir, &ioc_fops);
1979 }
1980 #endif
1981 
1982 static void
1983 sba_connect_bus(struct pci_bus *bus)
1984 {
1987  struct ioc *ioc;
1988 
1989  if (!PCI_CONTROLLER(bus))
1990  panic(PFX "no sysdata on bus %d!\n", bus->number);
1991 
1992  if (PCI_CONTROLLER(bus)->iommu)
1993  return;
1994 
1995  handle = PCI_CONTROLLER(bus)->acpi_handle;
1996  if (!handle)
1997  return;
1998 
1999  /*
2000  * The IOC scope encloses PCI root bridges in the ACPI
2001  * namespace, so work our way out until we find an IOC we
2002  * claimed previously.
2003  */
2004  do {
2005  for (ioc = ioc_list; ioc; ioc = ioc->next)
2006  if (ioc->handle == handle) {
2007  PCI_CONTROLLER(bus)->iommu = ioc;
2008  return;
2009  }
2010 
2011  status = acpi_get_parent(handle, &parent);
2012  handle = parent;
2013  } while (ACPI_SUCCESS(status));
2014 
2015  printk(KERN_WARNING "No IOC for PCI Bus %04x:%02x in ACPI\n", pci_domain_nr(bus), bus->number);
2016 }
2017 
2018 #ifdef CONFIG_NUMA
2019 static void __init
2020 sba_map_ioc_to_node(struct ioc *ioc, acpi_handle handle)
2021 {
2022  unsigned int node;
2023  int pxm;
2024 
2025  ioc->node = MAX_NUMNODES;
2026 
2027  pxm = acpi_get_pxm(handle);
2028 
2029  if (pxm < 0)
2030  return;
2031 
2032  node = pxm_to_node(pxm);
2033 
2034  if (node >= MAX_NUMNODES || !node_online(node))
2035  return;
2036 
2037  ioc->node = node;
2038  return;
2039 }
2040 #else
2041 #define sba_map_ioc_to_node(ioc, handle)
2042 #endif
2043 
2044 static int __init
2045 acpi_sba_ioc_add(struct acpi_device *device)
2046 {
2047  struct ioc *ioc;
2049  u64 hpa, length;
2050  struct acpi_device_info *adi;
2051 
2052  status = hp_acpi_csr_space(device->handle, &hpa, &length);
2053  if (ACPI_FAILURE(status))
2054  return 1;
2055 
2056  status = acpi_get_object_info(device->handle, &adi);
2057  if (ACPI_FAILURE(status))
2058  return 1;
2059 
2060  /*
2061  * For HWP0001, only SBA appears in ACPI namespace. It encloses the PCI
2062  * root bridges, and its CSR space includes the IOC function.
2063  */
2064  if (strncmp("HWP0001", adi->hardware_id.string, 7) == 0) {
2065  hpa += ZX1_IOC_OFFSET;
2066  /* zx1 based systems default to kernel page size iommu pages */
2067  if (!iovp_shift)
2068  iovp_shift = min(PAGE_SHIFT, 16);
2069  }
2070  kfree(adi);
2071 
2072  /*
2073  * default anything not caught above or specified on cmdline to 4k
2074  * iommu page size
2075  */
2076  if (!iovp_shift)
2077  iovp_shift = 12;
2078 
2079  ioc = ioc_init(hpa, device->handle);
2080  if (!ioc)
2081  return 1;
2082 
2083  /* setup NUMA node association */
2084  sba_map_ioc_to_node(ioc, device->handle);
2085  return 0;
2086 }
2087 
2088 static const struct acpi_device_id hp_ioc_iommu_device_ids[] = {
2089  {"HWP0001", 0},
2090  {"HWP0004", 0},
2091  {"", 0},
2092 };
2093 static struct acpi_driver acpi_sba_ioc_driver = {
2094  .name = "IOC IOMMU Driver",
2095  .ids = hp_ioc_iommu_device_ids,
2096  .ops = {
2097  .add = acpi_sba_ioc_add,
2098  },
2099 };
2100 
2101 extern struct dma_map_ops swiotlb_dma_ops;
2102 
2103 static int __init
2104 sba_init(void)
2105 {
2106  if (!ia64_platform_is("hpzx1") && !ia64_platform_is("hpzx1_swiotlb"))
2107  return 0;
2108 
2109 #if defined(CONFIG_IA64_GENERIC)
2110  /* If we are booting a kdump kernel, the sba_iommu will
2111  * cause devices that were not shutdown properly to MCA
2112  * as soon as they are turned back on. Our only option for
2113  * a successful kdump kernel boot is to use the swiotlb.
2114  */
2115  if (is_kdump_kernel()) {
2117  if (swiotlb_late_init_with_default_size(64 * (1<<20)) != 0)
2118  panic("Unable to initialize software I/O TLB:"
2119  " Try machvec=dig boot option");
2120  machvec_init("dig");
2121  return 0;
2122  }
2123 #endif
2124 
2125  acpi_bus_register_driver(&acpi_sba_ioc_driver);
2126  if (!ioc_list) {
2127 #ifdef CONFIG_IA64_GENERIC
2128  /*
2129  * If we didn't find something sba_iommu can claim, we
2130  * need to setup the swiotlb and switch to the dig machvec.
2131  */
2133  if (swiotlb_late_init_with_default_size(64 * (1<<20)) != 0)
2134  panic("Unable to find SBA IOMMU or initialize "
2135  "software I/O TLB: Try machvec=dig boot option");
2136  machvec_init("dig");
2137 #else
2138  panic("Unable to find SBA IOMMU: Try a generic or DIG kernel");
2139 #endif
2140  return 0;
2141  }
2142 
2143 #if defined(CONFIG_IA64_GENERIC) || defined(CONFIG_IA64_HP_ZX1_SWIOTLB)
2144  /*
2145  * hpzx1_swiotlb needs to have a fairly small swiotlb bounce
2146  * buffer setup to support devices with smaller DMA masks than
2147  * sba_iommu can handle.
2148  */
2149  if (ia64_platform_is("hpzx1_swiotlb")) {
2150  extern void hwsw_init(void);
2151 
2152  hwsw_init();
2153  }
2154 #endif
2155 
2156 #ifdef CONFIG_PCI
2157  {
2158  struct pci_bus *b = NULL;
2159  while ((b = pci_find_next_bus(b)) != NULL)
2160  sba_connect_bus(b);
2161  }
2162 #endif
2163 
2164 #ifdef CONFIG_PROC_FS
2165  ioc_proc_init();
2166 #endif
2167  return 0;
2168 }
2169 
2170 subsys_initcall(sba_init); /* must be initialized after ACPI etc., but before any drivers... */
2171 
2172 static int __init
2173 nosbagart(char *str)
2174 {
2175  reserve_sba_gart = 0;
2176  return 1;
2177 }
2178 
2179 static int sba_dma_supported (struct device *dev, u64 mask)
2180 {
2181  /* make sure it's at least 32bit capable */
2182  return ((mask & 0xFFFFFFFFUL) == 0xFFFFFFFFUL);
2183 }
2184 
2185 static int sba_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
2186 {
2187  return 0;
2188 }
2189 
2190 __setup("nosbagart", nosbagart);
2191 
2192 static int __init
2193 sba_page_override(char *str)
2194 {
2195  unsigned long page_size;
2196 
2197  page_size = memparse(str, &str);
2198  switch (page_size) {
2199  case 4096:
2200  case 8192:
2201  case 16384:
2202  case 65536:
2203  iovp_shift = ffs(page_size) - 1;
2204  break;
2205  default:
2206  printk("%s: unknown/unsupported iommu page size %ld\n",
2207  __func__, page_size);
2208  }
2209 
2210  return 1;
2211 }
2212 
2213 __setup("sbapagesize=",sba_page_override);
2214 
2216  .alloc = sba_alloc_coherent,
2217  .free = sba_free_coherent,
2218  .map_page = sba_map_page,
2219  .unmap_page = sba_unmap_page,
2220  .map_sg = sba_map_sg_attrs,
2221  .unmap_sg = sba_unmap_sg_attrs,
2222  .sync_single_for_cpu = machvec_dma_sync_single,
2223  .sync_sg_for_cpu = machvec_dma_sync_sg,
2224  .sync_single_for_device = machvec_dma_sync_single,
2225  .sync_sg_for_device = machvec_dma_sync_sg,
2226  .dma_supported = sba_dma_supported,
2227  .mapping_error = sba_dma_mapping_error,
2228 };
2229 
2230 void sba_dma_init(void)
2231 {
2232  dma_ops = &sba_dma_ops;
2233 }