Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
smp.c
Go to the documentation of this file.
1 /*
2  * SMP related functions
3  *
4  * Copyright IBM Corp. 1999, 2012
5  * Author(s): Denis Joseph Barrow,
6  * Martin Schwidefsky <[email protected]>,
7  * Heiko Carstens <[email protected]>,
8  *
9  * based on other smp stuff by
10  * (c) 1995 Alan Cox, CymruNET Ltd <[email protected]>
11  * (c) 1998 Ingo Molnar
12  *
13  * The code outside of smp.c uses logical cpu numbers, only smp.c does
14  * the translation of logical to physical cpu ids. All new code that
15  * operates on physical cpu numbers needs to go into smp.c.
16  */
17 
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20 
21 #include <linux/workqueue.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/mm.h>
25 #include <linux/err.h>
26 #include <linux/spinlock.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/irqflags.h>
31 #include <linux/cpu.h>
32 #include <linux/slab.h>
33 #include <linux/crash_dump.h>
34 #include <asm/asm-offsets.h>
35 #include <asm/switch_to.h>
36 #include <asm/facility.h>
37 #include <asm/ipl.h>
38 #include <asm/setup.h>
39 #include <asm/irq.h>
40 #include <asm/tlbflush.h>
41 #include <asm/vtimer.h>
42 #include <asm/lowcore.h>
43 #include <asm/sclp.h>
44 #include <asm/vdso.h>
45 #include <asm/debug.h>
46 #include <asm/os_info.h>
47 #include <asm/sigp.h>
48 #include "entry.h"
49 
50 enum {
55 };
56 
57 enum {
60 };
61 
62 struct pcpu {
63  struct cpu cpu;
64  struct _lowcore *lowcore; /* lowcore page(s) for the cpu */
65  unsigned long async_stack; /* async stack for the cpu */
66  unsigned long panic_stack; /* panic stack for the cpu */
67  unsigned long ec_mask; /* bit mask for ec_xxx functions */
68  int state; /* physical cpu state */
69  int polarization; /* physical polarization */
70  u16 address; /* physical cpu address */
71 };
72 
73 static u8 boot_cpu_type;
74 static u16 boot_cpu_address;
75 static struct pcpu pcpu_devices[NR_CPUS];
76 
77 /*
78  * The smp_cpu_state_mutex must be held when changing the state or polarization
79  * member of a pcpu data structure within the pcpu_devices arreay.
80  */
81 DEFINE_MUTEX(smp_cpu_state_mutex);
82 
83 /*
84  * Signal processor helper functions.
85  */
86 static inline int __pcpu_sigp(u16 addr, u8 order, u32 parm, u32 *status)
87 {
88  register unsigned int reg1 asm ("1") = parm;
89  int cc;
90 
91  asm volatile(
92  " sigp %1,%2,0(%3)\n"
93  " ipm %0\n"
94  " srl %0,28\n"
95  : "=d" (cc), "+d" (reg1) : "d" (addr), "a" (order) : "cc");
96  if (status && cc == 1)
97  *status = reg1;
98  return cc;
99 }
100 
101 static inline int __pcpu_sigp_relax(u16 addr, u8 order, u32 parm, u32 *status)
102 {
103  int cc;
104 
105  while (1) {
106  cc = __pcpu_sigp(addr, order, parm, NULL);
107  if (cc != SIGP_CC_BUSY)
108  return cc;
109  cpu_relax();
110  }
111 }
112 
113 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
114 {
115  int cc, retry;
116 
117  for (retry = 0; ; retry++) {
118  cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
119  if (cc != SIGP_CC_BUSY)
120  break;
121  if (retry >= 3)
122  udelay(10);
123  }
124  return cc;
125 }
126 
127 static inline int pcpu_stopped(struct pcpu *pcpu)
128 {
129  u32 uninitialized_var(status);
130 
131  if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
132  0, &status) != SIGP_CC_STATUS_STORED)
133  return 0;
134  return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
135 }
136 
137 static inline int pcpu_running(struct pcpu *pcpu)
138 {
139  if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
141  return 1;
142  /* Status stored condition code is equivalent to cpu not running. */
143  return 0;
144 }
145 
146 /*
147  * Find struct pcpu by cpu address.
148  */
149 static struct pcpu *pcpu_find_address(const struct cpumask *mask, int address)
150 {
151  int cpu;
152 
153  for_each_cpu(cpu, mask)
154  if (pcpu_devices[cpu].address == address)
155  return pcpu_devices + cpu;
156  return NULL;
157 }
158 
159 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
160 {
161  int order;
162 
163  set_bit(ec_bit, &pcpu->ec_mask);
164  order = pcpu_running(pcpu) ?
166  pcpu_sigp_retry(pcpu, order, 0);
167 }
168 
169 static int __cpuinit pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
170 {
171  struct _lowcore *lc;
172 
173  if (pcpu != &pcpu_devices[0]) {
174  pcpu->lowcore = (struct _lowcore *)
178  if (!pcpu->lowcore || !pcpu->panic_stack || !pcpu->async_stack)
179  goto out;
180  }
181  lc = pcpu->lowcore;
182  memcpy(lc, &S390_lowcore, 512);
183  memset((char *) lc + 512, 0, sizeof(*lc) - 512);
184  lc->async_stack = pcpu->async_stack + ASYNC_SIZE;
185  lc->panic_stack = pcpu->panic_stack + PAGE_SIZE;
186  lc->cpu_nr = cpu;
187 #ifndef CONFIG_64BIT
188  if (MACHINE_HAS_IEEE) {
189  lc->extended_save_area_addr = get_zeroed_page(GFP_KERNEL);
190  if (!lc->extended_save_area_addr)
191  goto out;
192  }
193 #else
194  if (vdso_alloc_per_cpu(lc))
195  goto out;
196 #endif
197  lowcore_ptr[cpu] = lc;
198  pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
199  return 0;
200 out:
201  if (pcpu != &pcpu_devices[0]) {
202  free_page(pcpu->panic_stack);
204  free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
205  }
206  return -ENOMEM;
207 }
208 
209 #ifdef CONFIG_HOTPLUG_CPU
210 
211 static void pcpu_free_lowcore(struct pcpu *pcpu)
212 {
213  pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
214  lowcore_ptr[pcpu - pcpu_devices] = NULL;
215 #ifndef CONFIG_64BIT
216  if (MACHINE_HAS_IEEE) {
217  struct _lowcore *lc = pcpu->lowcore;
218 
219  free_page((unsigned long) lc->extended_save_area_addr);
220  lc->extended_save_area_addr = 0;
221  }
222 #else
223  vdso_free_per_cpu(pcpu->lowcore);
224 #endif
225  if (pcpu != &pcpu_devices[0]) {
226  free_page(pcpu->panic_stack);
228  free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
229  }
230 }
231 
232 #endif /* CONFIG_HOTPLUG_CPU */
233 
234 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
235 {
236  struct _lowcore *lc = pcpu->lowcore;
237 
238  atomic_inc(&init_mm.context.attach_count);
239  lc->cpu_nr = cpu;
240  lc->percpu_offset = __per_cpu_offset[cpu];
241  lc->kernel_asce = S390_lowcore.kernel_asce;
242  lc->machine_flags = S390_lowcore.machine_flags;
243  lc->ftrace_func = S390_lowcore.ftrace_func;
244  lc->user_timer = lc->system_timer = lc->steal_timer = 0;
245  __ctl_store(lc->cregs_save_area, 0, 15);
246  save_access_regs((unsigned int *) lc->access_regs_save_area);
247  memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
248  MAX_FACILITY_BIT/8);
249 }
250 
251 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
252 {
253  struct _lowcore *lc = pcpu->lowcore;
254  struct thread_info *ti = task_thread_info(tsk);
255 
256  lc->kernel_stack = (unsigned long) task_stack_page(tsk) + THREAD_SIZE;
257  lc->thread_info = (unsigned long) task_thread_info(tsk);
258  lc->current_task = (unsigned long) tsk;
259  lc->user_timer = ti->user_timer;
260  lc->system_timer = ti->system_timer;
261  lc->steal_timer = 0;
262 }
263 
264 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
265 {
266  struct _lowcore *lc = pcpu->lowcore;
267 
268  lc->restart_stack = lc->kernel_stack;
269  lc->restart_fn = (unsigned long) func;
270  lc->restart_data = (unsigned long) data;
271  lc->restart_source = -1UL;
272  pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
273 }
274 
275 /*
276  * Call function via PSW restart on pcpu and stop the current cpu.
277  */
278 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
279  void *data, unsigned long stack)
280 {
281  struct _lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
282  unsigned long source_cpu = stap();
283 
284  __load_psw_mask(psw_kernel_bits);
285  if (pcpu->address == source_cpu)
286  func(data); /* should not return */
287  /* Stop target cpu (if func returns this stops the current cpu). */
288  pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
289  /* Restart func on the target cpu and stop the current cpu. */
291  mem_assign_absolute(lc->restart_fn, (unsigned long) func);
292  mem_assign_absolute(lc->restart_data, (unsigned long) data);
293  mem_assign_absolute(lc->restart_source, source_cpu);
294  asm volatile(
295  "0: sigp 0,%0,%2 # sigp restart to target cpu\n"
296  " brc 2,0b # busy, try again\n"
297  "1: sigp 0,%1,%3 # sigp stop to current cpu\n"
298  " brc 2,1b # busy, try again\n"
299  : : "d" (pcpu->address), "d" (source_cpu),
300  "K" (SIGP_RESTART), "K" (SIGP_STOP)
301  : "0", "1", "cc");
302  for (;;) ;
303 }
304 
305 /*
306  * Call function on an online CPU.
307  */
308 void smp_call_online_cpu(void (*func)(void *), void *data)
309 {
310  struct pcpu *pcpu;
311 
312  /* Use the current cpu if it is online. */
313  pcpu = pcpu_find_address(cpu_online_mask, stap());
314  if (!pcpu)
315  /* Use the first online cpu. */
316  pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
317  pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
318 }
319 
320 /*
321  * Call function on the ipl CPU.
322  */
323 void smp_call_ipl_cpu(void (*func)(void *), void *data)
324 {
325  pcpu_delegate(&pcpu_devices[0], func, data,
326  pcpu_devices->panic_stack + PAGE_SIZE);
327 }
328 
330 {
331  int cpu;
332 
334  if (pcpu_devices[cpu].address == address)
335  return cpu;
336  return -1;
337 }
338 
339 int smp_vcpu_scheduled(int cpu)
340 {
341  return pcpu_running(pcpu_devices + cpu);
342 }
343 
344 void smp_yield(void)
345 {
346  if (MACHINE_HAS_DIAG44)
347  asm volatile("diag 0,0,0x44");
348 }
349 
350 void smp_yield_cpu(int cpu)
351 {
352  if (MACHINE_HAS_DIAG9C)
353  asm volatile("diag %0,0,0x9c"
354  : : "d" (pcpu_devices[cpu].address));
355  else if (MACHINE_HAS_DIAG44)
356  asm volatile("diag 0,0,0x44");
357 }
358 
359 /*
360  * Send cpus emergency shutdown signal. This gives the cpus the
361  * opportunity to complete outstanding interrupts.
362  */
364 {
365  u64 end;
366  int cpu;
367 
368  end = get_clock() + (1000000UL << 12);
369  for_each_cpu(cpu, cpumask) {
370  struct pcpu *pcpu = pcpu_devices + cpu;
371  set_bit(ec_stop_cpu, &pcpu->ec_mask);
372  while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
373  0, NULL) == SIGP_CC_BUSY &&
374  get_clock() < end)
375  cpu_relax();
376  }
377  while (get_clock() < end) {
378  for_each_cpu(cpu, cpumask)
379  if (pcpu_stopped(pcpu_devices + cpu))
380  cpumask_clear_cpu(cpu, cpumask);
381  if (cpumask_empty(cpumask))
382  break;
383  cpu_relax();
384  }
385 }
386 
387 /*
388  * Stop all cpus but the current one.
389  */
390 void smp_send_stop(void)
391 {
393  int cpu;
394 
395  /* Disable all interrupts/machine checks */
396  __load_psw_mask(psw_kernel_bits | PSW_MASK_DAT);
398 
400  cpumask_copy(&cpumask, cpu_online_mask);
401  cpumask_clear_cpu(smp_processor_id(), &cpumask);
402 
403  if (oops_in_progress)
404  smp_emergency_stop(&cpumask);
405 
406  /* stop all processors */
407  for_each_cpu(cpu, &cpumask) {
408  struct pcpu *pcpu = pcpu_devices + cpu;
409  pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
410  while (!pcpu_stopped(pcpu))
411  cpu_relax();
412  }
413 }
414 
415 /*
416  * Stop the current cpu.
417  */
418 void smp_stop_cpu(void)
419 {
420  pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
421  for (;;) ;
422 }
423 
424 /*
425  * This is the main routine where commands issued by other
426  * cpus are handled.
427  */
428 static void do_ext_call_interrupt(struct ext_code ext_code,
429  unsigned int param32, unsigned long param64)
430 {
431  unsigned long bits;
432  int cpu;
433 
434  cpu = smp_processor_id();
435  if (ext_code.code == 0x1202)
436  kstat_cpu(cpu).irqs[EXTINT_EXC]++;
437  else
438  kstat_cpu(cpu).irqs[EXTINT_EMS]++;
439  /*
440  * handle bit signal external calls
441  */
442  bits = xchg(&pcpu_devices[cpu].ec_mask, 0);
443 
444  if (test_bit(ec_stop_cpu, &bits))
445  smp_stop_cpu();
446 
447  if (test_bit(ec_schedule, &bits))
448  scheduler_ipi();
449 
450  if (test_bit(ec_call_function, &bits))
451  generic_smp_call_function_interrupt();
452 
453  if (test_bit(ec_call_function_single, &bits))
454  generic_smp_call_function_single_interrupt();
455 
456 }
457 
459 {
460  int cpu;
461 
462  for_each_cpu(cpu, mask)
463  pcpu_ec_call(pcpu_devices + cpu, ec_call_function);
464 }
465 
467 {
468  pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
469 }
470 
471 #ifndef CONFIG_64BIT
472 /*
473  * this function sends a 'purge tlb' signal to another CPU.
474  */
475 static void smp_ptlb_callback(void *info)
476 {
477  __tlb_flush_local();
478 }
479 
480 void smp_ptlb_all(void)
481 {
482  on_each_cpu(smp_ptlb_callback, NULL, 1);
483 }
485 #endif /* ! CONFIG_64BIT */
486 
487 /*
488  * this function sends a 'reschedule' IPI to another CPU.
489  * it goes straight through and wastes no time serializing
490  * anything. Worst case is that we lose a reschedule ...
491  */
492 void smp_send_reschedule(int cpu)
493 {
494  pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
495 }
496 
497 /*
498  * parameter area for the set/clear control bit callbacks
499  */
501  unsigned long orval;
502  unsigned long andval;
503  int cr;
504 };
505 
506 /*
507  * callback for setting/clearing control bits
508  */
509 static void smp_ctl_bit_callback(void *info)
510 {
511  struct ec_creg_mask_parms *pp = info;
512  unsigned long cregs[16];
513 
514  __ctl_store(cregs, 0, 15);
515  cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
516  __ctl_load(cregs, 0, 15);
517 }
518 
519 /*
520  * Set a bit in a control register of all cpus
521  */
522 void smp_ctl_set_bit(int cr, int bit)
523 {
524  struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
525 
526  on_each_cpu(smp_ctl_bit_callback, &parms, 1);
527 }
529 
530 /*
531  * Clear a bit in a control register of all cpus
532  */
533 void smp_ctl_clear_bit(int cr, int bit)
534 {
535  struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
536 
537  on_each_cpu(smp_ctl_bit_callback, &parms, 1);
538 }
540 
541 #if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_CRASH_DUMP)
542 
543 struct save_area *zfcpdump_save_areas[NR_CPUS + 1];
544 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
545 
546 static void __init smp_get_save_area(int cpu, u16 address)
547 {
548  void *lc = pcpu_devices[0].lowcore;
549  struct save_area *save_area;
550 
551  if (is_kdump_kernel())
552  return;
553  if (!OLDMEM_BASE && (address == boot_cpu_address ||
555  return;
556  if (cpu >= NR_CPUS) {
557  pr_warning("CPU %i exceeds the maximum %i and is excluded "
558  "from the dump\n", cpu, NR_CPUS - 1);
559  return;
560  }
561  save_area = kmalloc(sizeof(struct save_area), GFP_KERNEL);
562  if (!save_area)
563  panic("could not allocate memory for save area\n");
564  zfcpdump_save_areas[cpu] = save_area;
565 #ifdef CONFIG_CRASH_DUMP
566  if (address == boot_cpu_address) {
567  /* Copy the registers of the boot cpu. */
568  copy_oldmem_page(1, (void *) save_area, sizeof(*save_area),
569  SAVE_AREA_BASE - PAGE_SIZE, 0);
570  return;
571  }
572 #endif
573  /* Get the registers of a non-boot cpu. */
574  __pcpu_sigp_relax(address, SIGP_STOP_AND_STORE_STATUS, 0, NULL);
575  memcpy_real(save_area, lc + SAVE_AREA_BASE, sizeof(*save_area));
576 }
577 
578 int smp_store_status(int cpu)
579 {
580  struct pcpu *pcpu;
581 
582  pcpu = pcpu_devices + cpu;
583  if (__pcpu_sigp_relax(pcpu->address, SIGP_STOP_AND_STORE_STATUS,
585  return -EIO;
586  return 0;
587 }
588 
589 #else /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
590 
591 static inline void smp_get_save_area(int cpu, u16 address) { }
592 
593 #endif /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
594 
595 void smp_cpu_set_polarization(int cpu, int val)
596 {
597  pcpu_devices[cpu].polarization = val;
598 }
599 
601 {
602  return pcpu_devices[cpu].polarization;
603 }
604 
605 static struct sclp_cpu_info *smp_get_cpu_info(void)
606 {
607  static int use_sigp_detection;
608  struct sclp_cpu_info *info;
609  int address;
610 
611  info = kzalloc(sizeof(*info), GFP_KERNEL);
612  if (info && (use_sigp_detection || sclp_get_cpu_info(info))) {
613  use_sigp_detection = 1;
614  for (address = 0; address <= MAX_CPU_ADDRESS; address++) {
615  if (__pcpu_sigp_relax(address, SIGP_SENSE, 0, NULL) ==
617  continue;
618  info->cpu[info->configured].address = address;
619  info->configured++;
620  }
621  info->combined = info->configured;
622  }
623  return info;
624 }
625 
626 static int __devinit smp_add_present_cpu(int cpu);
627 
628 static int __devinit __smp_rescan_cpus(struct sclp_cpu_info *info,
629  int sysfs_add)
630 {
631  struct pcpu *pcpu;
633  int cpu, nr, i;
634 
635  nr = 0;
636  cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
637  cpu = cpumask_first(&avail);
638  for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
639  if (info->has_cpu_type && info->cpu[i].type != boot_cpu_type)
640  continue;
641  if (pcpu_find_address(cpu_present_mask, info->cpu[i].address))
642  continue;
643  pcpu = pcpu_devices + cpu;
644  pcpu->address = info->cpu[i].address;
645  pcpu->state = (cpu >= info->configured) ?
648  set_cpu_present(cpu, true);
649  if (sysfs_add && smp_add_present_cpu(cpu) != 0)
650  set_cpu_present(cpu, false);
651  else
652  nr++;
653  cpu = cpumask_next(cpu, &avail);
654  }
655  return nr;
656 }
657 
658 static void __init smp_detect_cpus(void)
659 {
660  unsigned int cpu, c_cpus, s_cpus;
661  struct sclp_cpu_info *info;
662 
663  info = smp_get_cpu_info();
664  if (!info)
665  panic("smp_detect_cpus failed to allocate memory\n");
666  if (info->has_cpu_type) {
667  for (cpu = 0; cpu < info->combined; cpu++) {
668  if (info->cpu[cpu].address != boot_cpu_address)
669  continue;
670  /* The boot cpu dictates the cpu type. */
671  boot_cpu_type = info->cpu[cpu].type;
672  break;
673  }
674  }
675  c_cpus = s_cpus = 0;
676  for (cpu = 0; cpu < info->combined; cpu++) {
677  if (info->has_cpu_type && info->cpu[cpu].type != boot_cpu_type)
678  continue;
680  smp_get_save_area(c_cpus, info->cpu[cpu].address);
681  c_cpus++;
682  } else
683  s_cpus++;
684  }
685  pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
686  get_online_cpus();
687  __smp_rescan_cpus(info, 0);
688  put_online_cpus();
689  kfree(info);
690 }
691 
692 /*
693  * Activate a secondary processor.
694  */
695 static void __cpuinit smp_start_secondary(void *cpuvoid)
696 {
697  S390_lowcore.last_update_clock = get_clock();
698  S390_lowcore.restart_stack = (unsigned long) restart_stack;
699  S390_lowcore.restart_fn = (unsigned long) do_restart;
700  S390_lowcore.restart_data = 0;
701  S390_lowcore.restart_source = -1UL;
702  restore_access_regs(S390_lowcore.access_regs_save_area);
703  __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
704  __load_psw_mask(psw_kernel_bits | PSW_MASK_DAT);
705  cpu_init();
706  preempt_disable();
707  init_cpu_timer();
708  init_cpu_vtimer();
709  pfault_init();
710  notify_cpu_starting(smp_processor_id());
713  /* cpu_idle will call schedule for us */
714  cpu_idle();
715 }
716 
717 /* Upping and downing of CPUs */
718 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
719 {
720  struct pcpu *pcpu;
721  int rc;
722 
723  pcpu = pcpu_devices + cpu;
724  if (pcpu->state != CPU_STATE_CONFIGURED)
725  return -EIO;
726  if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
728  return -EIO;
729 
730  rc = pcpu_alloc_lowcore(pcpu, cpu);
731  if (rc)
732  return rc;
733  pcpu_prepare_secondary(pcpu, cpu);
734  pcpu_attach_task(pcpu, tidle);
735  pcpu_start_fn(pcpu, smp_start_secondary, NULL);
736  while (!cpu_online(cpu))
737  cpu_relax();
738  return 0;
739 }
740 
741 static int __init setup_possible_cpus(char *s)
742 {
743  int max, cpu;
744 
745  if (kstrtoint(s, 0, &max) < 0)
746  return 0;
748  for (cpu = 1; cpu < max && cpu < nr_cpu_ids; cpu++)
749  set_cpu_possible(cpu, true);
750  return 0;
751 }
752 early_param("possible_cpus", setup_possible_cpus);
753 
754 #ifdef CONFIG_HOTPLUG_CPU
755 
756 int __cpu_disable(void)
757 {
758  unsigned long cregs[16];
759 
761  /* Disable pseudo page faults on this cpu. */
762  pfault_fini();
763  /* Disable interrupt sources via control register. */
764  __ctl_store(cregs, 0, 15);
765  cregs[0] &= ~0x0000ee70UL; /* disable all external interrupts */
766  cregs[6] &= ~0xff000000UL; /* disable all I/O interrupts */
767  cregs[14] &= ~0x1f000000UL; /* disable most machine checks */
768  __ctl_load(cregs, 0, 15);
769  return 0;
770 }
771 
772 void __cpu_die(unsigned int cpu)
773 {
774  struct pcpu *pcpu;
775 
776  /* Wait until target cpu is down */
777  pcpu = pcpu_devices + cpu;
778  while (!pcpu_stopped(pcpu))
779  cpu_relax();
780  pcpu_free_lowcore(pcpu);
781  atomic_dec(&init_mm.context.attach_count);
782 }
783 
784 void __noreturn cpu_die(void)
785 {
786  idle_task_exit();
787  pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
788  for (;;) ;
789 }
790 
791 #endif /* CONFIG_HOTPLUG_CPU */
792 
793 void __init smp_prepare_cpus(unsigned int max_cpus)
794 {
795  /* request the 0x1201 emergency signal external interrupt */
796  if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
797  panic("Couldn't request external interrupt 0x1201");
798  /* request the 0x1202 external call external interrupt */
799  if (register_external_interrupt(0x1202, do_ext_call_interrupt) != 0)
800  panic("Couldn't request external interrupt 0x1202");
801  smp_detect_cpus();
802 }
803 
805 {
806  struct pcpu *pcpu = pcpu_devices;
807 
808  boot_cpu_address = stap();
809  pcpu->state = CPU_STATE_CONFIGURED;
810  pcpu->address = boot_cpu_address;
811  pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix();
812  pcpu->async_stack = S390_lowcore.async_stack - ASYNC_SIZE;
813  pcpu->panic_stack = S390_lowcore.panic_stack - PAGE_SIZE;
814  S390_lowcore.percpu_offset = __per_cpu_offset[0];
816  set_cpu_present(0, true);
817  set_cpu_online(0, true);
818 }
819 
820 void __init smp_cpus_done(unsigned int max_cpus)
821 {
822 }
823 
825 {
826  S390_lowcore.cpu_nr = 0;
827 }
828 
829 /*
830  * the frequency of the profiling timer can be changed
831  * by writing a multiplier value into /proc/profile.
832  *
833  * usually you want to run this on all CPUs ;)
834  */
835 int setup_profiling_timer(unsigned int multiplier)
836 {
837  return 0;
838 }
839 
840 #ifdef CONFIG_HOTPLUG_CPU
841 static ssize_t cpu_configure_show(struct device *dev,
842  struct device_attribute *attr, char *buf)
843 {
844  ssize_t count;
845 
846  mutex_lock(&smp_cpu_state_mutex);
847  count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
848  mutex_unlock(&smp_cpu_state_mutex);
849  return count;
850 }
851 
852 static ssize_t cpu_configure_store(struct device *dev,
853  struct device_attribute *attr,
854  const char *buf, size_t count)
855 {
856  struct pcpu *pcpu;
857  int cpu, val, rc;
858  char delim;
859 
860  if (sscanf(buf, "%d %c", &val, &delim) != 1)
861  return -EINVAL;
862  if (val != 0 && val != 1)
863  return -EINVAL;
864  get_online_cpus();
865  mutex_lock(&smp_cpu_state_mutex);
866  rc = -EBUSY;
867  /* disallow configuration changes of online cpus and cpu 0 */
868  cpu = dev->id;
869  if (cpu_online(cpu) || cpu == 0)
870  goto out;
871  pcpu = pcpu_devices + cpu;
872  rc = 0;
873  switch (val) {
874  case 0:
875  if (pcpu->state != CPU_STATE_CONFIGURED)
876  break;
877  rc = sclp_cpu_deconfigure(pcpu->address);
878  if (rc)
879  break;
880  pcpu->state = CPU_STATE_STANDBY;
883  break;
884  case 1:
885  if (pcpu->state != CPU_STATE_STANDBY)
886  break;
887  rc = sclp_cpu_configure(pcpu->address);
888  if (rc)
889  break;
890  pcpu->state = CPU_STATE_CONFIGURED;
893  break;
894  default:
895  break;
896  }
897 out:
898  mutex_unlock(&smp_cpu_state_mutex);
899  put_online_cpus();
900  return rc ? rc : count;
901 }
902 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
903 #endif /* CONFIG_HOTPLUG_CPU */
904 
905 static ssize_t show_cpu_address(struct device *dev,
906  struct device_attribute *attr, char *buf)
907 {
908  return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
909 }
910 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
911 
912 static struct attribute *cpu_common_attrs[] = {
913 #ifdef CONFIG_HOTPLUG_CPU
914  &dev_attr_configure.attr,
915 #endif
916  &dev_attr_address.attr,
917  NULL,
918 };
919 
920 static struct attribute_group cpu_common_attr_group = {
921  .attrs = cpu_common_attrs,
922 };
923 
924 static ssize_t show_idle_count(struct device *dev,
925  struct device_attribute *attr, char *buf)
926 {
927  struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
928  unsigned long long idle_count;
929  unsigned int sequence;
930 
931  do {
932  sequence = ACCESS_ONCE(idle->sequence);
933  idle_count = ACCESS_ONCE(idle->idle_count);
934  if (ACCESS_ONCE(idle->clock_idle_enter))
935  idle_count++;
936  } while ((sequence & 1) || (idle->sequence != sequence));
937  return sprintf(buf, "%llu\n", idle_count);
938 }
939 static DEVICE_ATTR(idle_count, 0444, show_idle_count, NULL);
940 
941 static ssize_t show_idle_time(struct device *dev,
942  struct device_attribute *attr, char *buf)
943 {
944  struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
945  unsigned long long now, idle_time, idle_enter, idle_exit;
946  unsigned int sequence;
947 
948  do {
949  now = get_clock();
950  sequence = ACCESS_ONCE(idle->sequence);
951  idle_time = ACCESS_ONCE(idle->idle_time);
952  idle_enter = ACCESS_ONCE(idle->clock_idle_enter);
953  idle_exit = ACCESS_ONCE(idle->clock_idle_exit);
954  } while ((sequence & 1) || (idle->sequence != sequence));
955  idle_time += idle_enter ? ((idle_exit ? : now) - idle_enter) : 0;
956  return sprintf(buf, "%llu\n", idle_time >> 12);
957 }
958 static DEVICE_ATTR(idle_time_us, 0444, show_idle_time, NULL);
959 
960 static struct attribute *cpu_online_attrs[] = {
961  &dev_attr_idle_count.attr,
962  &dev_attr_idle_time_us.attr,
963  NULL,
964 };
965 
966 static struct attribute_group cpu_online_attr_group = {
967  .attrs = cpu_online_attrs,
968 };
969 
970 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
971  unsigned long action, void *hcpu)
972 {
973  unsigned int cpu = (unsigned int)(long)hcpu;
974  struct cpu *c = &pcpu_devices[cpu].cpu;
975  struct device *s = &c->dev;
976  int err = 0;
977 
978  switch (action & ~CPU_TASKS_FROZEN) {
979  case CPU_ONLINE:
980  err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
981  break;
982  case CPU_DEAD:
983  sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
984  break;
985  }
986  return notifier_from_errno(err);
987 }
988 
989 static int __devinit smp_add_present_cpu(int cpu)
990 {
991  struct cpu *c = &pcpu_devices[cpu].cpu;
992  struct device *s = &c->dev;
993  int rc;
994 
995  c->hotpluggable = 1;
996  rc = register_cpu(c, cpu);
997  if (rc)
998  goto out;
999  rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1000  if (rc)
1001  goto out_cpu;
1002  if (cpu_online(cpu)) {
1003  rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1004  if (rc)
1005  goto out_online;
1006  }
1007  rc = topology_cpu_init(c);
1008  if (rc)
1009  goto out_topology;
1010  return 0;
1011 
1012 out_topology:
1013  if (cpu_online(cpu))
1014  sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1015 out_online:
1016  sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1017 out_cpu:
1018 #ifdef CONFIG_HOTPLUG_CPU
1019  unregister_cpu(c);
1020 #endif
1021 out:
1022  return rc;
1023 }
1024 
1025 #ifdef CONFIG_HOTPLUG_CPU
1026 
1027 int __ref smp_rescan_cpus(void)
1028 {
1029  struct sclp_cpu_info *info;
1030  int nr;
1031 
1032  info = smp_get_cpu_info();
1033  if (!info)
1034  return -ENOMEM;
1035  get_online_cpus();
1036  mutex_lock(&smp_cpu_state_mutex);
1037  nr = __smp_rescan_cpus(info, 1);
1038  mutex_unlock(&smp_cpu_state_mutex);
1039  put_online_cpus();
1040  kfree(info);
1041  if (nr)
1043  return 0;
1044 }
1045 
1046 static ssize_t __ref rescan_store(struct device *dev,
1047  struct device_attribute *attr,
1048  const char *buf,
1049  size_t count)
1050 {
1051  int rc;
1052 
1053  rc = smp_rescan_cpus();
1054  return rc ? rc : count;
1055 }
1056 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1057 #endif /* CONFIG_HOTPLUG_CPU */
1058 
1059 static int __init s390_smp_init(void)
1060 {
1061  int cpu, rc;
1062 
1063  hotcpu_notifier(smp_cpu_notify, 0);
1064 #ifdef CONFIG_HOTPLUG_CPU
1065  rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1066  if (rc)
1067  return rc;
1068 #endif
1069  for_each_present_cpu(cpu) {
1070  rc = smp_add_present_cpu(cpu);
1071  if (rc)
1072  return rc;
1073  }
1074  return 0;
1075 }
1076 subsys_initcall(s390_smp_init);