Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
associola.c
Go to the documentation of this file.
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 La Monte H.P. Yarroll
7  *
8  * This file is part of the SCTP kernel implementation
9  *
10  * This module provides the abstraction for an SCTP association.
11  *
12  * This SCTP implementation is free software;
13  * you can redistribute it and/or modify it under the terms of
14  * the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This SCTP implementation is distributed in the hope that it
19  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20  * ************************
21  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22  * See the GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with GNU CC; see the file COPYING. If not, write to
26  * the Free Software Foundation, 59 Temple Place - Suite 330,
27  * Boston, MA 02111-1307, USA.
28  *
29  * Please send any bug reports or fixes you make to the
30  * email address(es):
31  * lksctp developers <[email protected]>
32  *
33  * Or submit a bug report through the following website:
34  * http://www.sf.net/projects/lksctp
35  *
36  * Written or modified by:
37  * La Monte H.P. Yarroll <[email protected]>
38  * Karl Knutson <[email protected]>
39  * Jon Grimm <[email protected]>
40  * Xingang Guo <[email protected]>
41  * Hui Huang <[email protected]>
42  * Sridhar Samudrala <[email protected]>
43  * Daisy Chang <[email protected]>
44  * Ryan Layer <[email protected]>
45  * Kevin Gao <[email protected]>
46  *
47  * Any bugs reported given to us we will try to fix... any fixes shared will
48  * be incorporated into the next SCTP release.
49  */
50 
51 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
52 
53 #include <linux/types.h>
54 #include <linux/fcntl.h>
55 #include <linux/poll.h>
56 #include <linux/init.h>
57 
58 #include <linux/slab.h>
59 #include <linux/in.h>
60 #include <net/ipv6.h>
61 #include <net/sctp/sctp.h>
62 #include <net/sctp/sm.h>
63 
64 /* Forward declarations for internal functions. */
65 static void sctp_assoc_bh_rcv(struct work_struct *work);
66 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
67 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
68 
69 /* Keep track of the new idr low so that we don't re-use association id
70  * numbers too fast. It is protected by they idr spin lock is in the
71  * range of 1 - INT_MAX.
72  */
73 static u32 idr_low = 1;
74 
75 
76 /* 1st Level Abstractions. */
77 
78 /* Initialize a new association from provided memory. */
79 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
80  const struct sctp_endpoint *ep,
81  const struct sock *sk,
83  gfp_t gfp)
84 {
85  struct net *net = sock_net(sk);
86  struct sctp_sock *sp;
87  int i;
89  int err;
90 
91  /* Retrieve the SCTP per socket area. */
92  sp = sctp_sk((struct sock *)sk);
93 
94  /* Discarding const is appropriate here. */
95  asoc->ep = (struct sctp_endpoint *)ep;
96  sctp_endpoint_hold(asoc->ep);
97 
98  /* Hold the sock. */
99  asoc->base.sk = (struct sock *)sk;
100  sock_hold(asoc->base.sk);
101 
102  /* Initialize the common base substructure. */
103  asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
104 
105  /* Initialize the object handling fields. */
106  atomic_set(&asoc->base.refcnt, 1);
107  asoc->base.dead = 0;
108  asoc->base.malloced = 0;
109 
110  /* Initialize the bind addr area. */
111  sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
112 
113  asoc->state = SCTP_STATE_CLOSED;
114 
115  /* Set these values from the socket values, a conversion between
116  * millsecons to seconds/microseconds must also be done.
117  */
118  asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000;
119  asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000)
120  * 1000;
121  asoc->frag_point = 0;
122  asoc->user_frag = sp->user_frag;
123 
124  /* Set the association max_retrans and RTO values from the
125  * socket values.
126  */
127  asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
128  asoc->pf_retrans = net->sctp.pf_retrans;
129 
130  asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
131  asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
132  asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
133 
134  asoc->overall_error_count = 0;
135 
136  /* Initialize the association's heartbeat interval based on the
137  * sock configured value.
138  */
140 
141  /* Initialize path max retrans value. */
142  asoc->pathmaxrxt = sp->pathmaxrxt;
143 
144  /* Initialize default path MTU. */
145  asoc->pathmtu = sp->pathmtu;
146 
147  /* Set association default SACK delay */
148  asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
149  asoc->sackfreq = sp->sackfreq;
150 
151  /* Set the association default flags controlling
152  * Heartbeat, SACK delay, and Path MTU Discovery.
153  */
154  asoc->param_flags = sp->param_flags;
155 
156  /* Initialize the maximum mumber of new data packets that can be sent
157  * in a burst.
158  */
159  asoc->max_burst = sp->max_burst;
160 
161  /* initialize association timers */
168 
169  /* sctpimpguide Section 2.12.2
170  * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
171  * recommended value of 5 times 'RTO.Max'.
172  */
174  = 5 * asoc->rto_max;
175 
179  min_t(unsigned long, sp->autoclose, net->sctp.max_autoclose) * HZ;
180 
181  /* Initializes the timers */
183  setup_timer(&asoc->timers[i], sctp_timer_events[i],
184  (unsigned long)asoc);
185 
186  /* Pull default initialization values from the sock options.
187  * Note: This assumes that the values have already been
188  * validated in the sock.
189  */
190  asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
191  asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams;
192  asoc->max_init_attempts = sp->initmsg.sinit_max_attempts;
193 
194  asoc->max_init_timeo =
195  msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
196 
197  /* Allocate storage for the ssnmap after the inbound and outbound
198  * streams have been negotiated during Init.
199  */
200  asoc->ssnmap = NULL;
201 
202  /* Set the local window size for receive.
203  * This is also the rcvbuf space per association.
204  * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
205  * 1500 bytes in one SCTP packet.
206  */
207  if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
208  asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
209  else
210  asoc->rwnd = sk->sk_rcvbuf/2;
211 
212  asoc->a_rwnd = asoc->rwnd;
213 
214  asoc->rwnd_over = 0;
215  asoc->rwnd_press = 0;
216 
217  /* Use my own max window until I learn something better. */
218  asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
219 
220  /* Set the sndbuf size for transmit. */
221  asoc->sndbuf_used = 0;
222 
223  /* Initialize the receive memory counter */
224  atomic_set(&asoc->rmem_alloc, 0);
225 
226  init_waitqueue_head(&asoc->wait);
227 
228  asoc->c.my_vtag = sctp_generate_tag(ep);
229  asoc->peer.i.init_tag = 0; /* INIT needs a vtag of 0. */
230  asoc->c.peer_vtag = 0;
231  asoc->c.my_ttag = 0;
232  asoc->c.peer_ttag = 0;
233  asoc->c.my_port = ep->base.bind_addr.port;
234 
235  asoc->c.initial_tsn = sctp_generate_tsn(ep);
236 
237  asoc->next_tsn = asoc->c.initial_tsn;
238 
239  asoc->ctsn_ack_point = asoc->next_tsn - 1;
240  asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
241  asoc->highest_sacked = asoc->ctsn_ack_point;
242  asoc->last_cwr_tsn = asoc->ctsn_ack_point;
243  asoc->unack_data = 0;
244 
245  /* ADDIP Section 4.1 Asconf Chunk Procedures
246  *
247  * When an endpoint has an ASCONF signaled change to be sent to the
248  * remote endpoint it should do the following:
249  * ...
250  * A2) a serial number should be assigned to the chunk. The serial
251  * number SHOULD be a monotonically increasing number. The serial
252  * numbers SHOULD be initialized at the start of the
253  * association to the same value as the initial TSN.
254  */
255  asoc->addip_serial = asoc->c.initial_tsn;
256 
257  INIT_LIST_HEAD(&asoc->addip_chunk_list);
258  INIT_LIST_HEAD(&asoc->asconf_ack_list);
259 
260  /* Make an empty list of remote transport addresses. */
261  INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
262  asoc->peer.transport_count = 0;
263 
264  /* RFC 2960 5.1 Normal Establishment of an Association
265  *
266  * After the reception of the first data chunk in an
267  * association the endpoint must immediately respond with a
268  * sack to acknowledge the data chunk. Subsequent
269  * acknowledgements should be done as described in Section
270  * 6.2.
271  *
272  * [We implement this by telling a new association that it
273  * already received one packet.]
274  */
275  asoc->peer.sack_needed = 1;
276  asoc->peer.sack_cnt = 0;
277  asoc->peer.sack_generation = 1;
278 
279  /* Assume that the peer will tell us if he recognizes ASCONF
280  * as part of INIT exchange.
281  * The sctp_addip_noauth option is there for backward compatibilty
282  * and will revert old behavior.
283  */
284  asoc->peer.asconf_capable = 0;
285  if (net->sctp.addip_noauth)
286  asoc->peer.asconf_capable = 1;
287  asoc->asconf_addr_del_pending = NULL;
288  asoc->src_out_of_asoc_ok = 0;
289  asoc->new_transport = NULL;
290 
291  /* Create an input queue. */
292  sctp_inq_init(&asoc->base.inqueue);
293  sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
294 
295  /* Create an output queue. */
296  sctp_outq_init(asoc, &asoc->outqueue);
297 
298  if (!sctp_ulpq_init(&asoc->ulpq, asoc))
299  goto fail_init;
300 
301  memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap));
302 
303  asoc->need_ecne = 0;
304 
305  asoc->assoc_id = 0;
306 
307  /* Assume that peer would support both address types unless we are
308  * told otherwise.
309  */
310  asoc->peer.ipv4_address = 1;
311  if (asoc->base.sk->sk_family == PF_INET6)
312  asoc->peer.ipv6_address = 1;
313  INIT_LIST_HEAD(&asoc->asocs);
314 
315  asoc->autoclose = sp->autoclose;
316 
317  asoc->default_stream = sp->default_stream;
318  asoc->default_ppid = sp->default_ppid;
319  asoc->default_flags = sp->default_flags;
320  asoc->default_context = sp->default_context;
321  asoc->default_timetolive = sp->default_timetolive;
322  asoc->default_rcv_context = sp->default_rcv_context;
323 
324  /* AUTH related initializations */
325  INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
326  err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
327  if (err)
328  goto fail_init;
329 
330  asoc->active_key_id = ep->active_key_id;
331  asoc->asoc_shared_key = NULL;
332 
333  asoc->default_hmac_id = 0;
334  /* Save the hmacs and chunks list into this association */
335  if (ep->auth_hmacs_list)
336  memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
337  ntohs(ep->auth_hmacs_list->param_hdr.length));
338  if (ep->auth_chunk_list)
339  memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
340  ntohs(ep->auth_chunk_list->param_hdr.length));
341 
342  /* Get the AUTH random number for this association */
343  p = (sctp_paramhdr_t *)asoc->c.auth_random;
344  p->type = SCTP_PARAM_RANDOM;
347 
348  return asoc;
349 
350 fail_init:
351  sctp_endpoint_put(asoc->ep);
352  sock_put(asoc->base.sk);
353  return NULL;
354 }
355 
356 /* Allocate and initialize a new association */
358  const struct sock *sk,
359  sctp_scope_t scope,
360  gfp_t gfp)
361 {
362  struct sctp_association *asoc;
363 
364  asoc = t_new(struct sctp_association, gfp);
365  if (!asoc)
366  goto fail;
367 
368  if (!sctp_association_init(asoc, ep, sk, scope, gfp))
369  goto fail_init;
370 
371  asoc->base.malloced = 1;
372  SCTP_DBG_OBJCNT_INC(assoc);
373  SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc);
374 
375  return asoc;
376 
377 fail_init:
378  kfree(asoc);
379 fail:
380  return NULL;
381 }
382 
383 /* Free this association if possible. There may still be users, so
384  * the actual deallocation may be delayed.
385  */
387 {
388  struct sock *sk = asoc->base.sk;
389  struct sctp_transport *transport;
390  struct list_head *pos, *temp;
391  int i;
392 
393  /* Only real associations count against the endpoint, so
394  * don't bother for if this is a temporary association.
395  */
396  if (!asoc->temp) {
397  list_del(&asoc->asocs);
398 
399  /* Decrement the backlog value for a TCP-style listening
400  * socket.
401  */
402  if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
403  sk->sk_ack_backlog--;
404  }
405 
406  /* Mark as dead, so other users can know this structure is
407  * going away.
408  */
409  asoc->base.dead = 1;
410 
411  /* Dispose of any data lying around in the outqueue. */
412  sctp_outq_free(&asoc->outqueue);
413 
414  /* Dispose of any pending messages for the upper layer. */
415  sctp_ulpq_free(&asoc->ulpq);
416 
417  /* Dispose of any pending chunks on the inqueue. */
418  sctp_inq_free(&asoc->base.inqueue);
419 
420  sctp_tsnmap_free(&asoc->peer.tsn_map);
421 
422  /* Free ssnmap storage. */
423  sctp_ssnmap_free(asoc->ssnmap);
424 
425  /* Clean up the bound address list. */
426  sctp_bind_addr_free(&asoc->base.bind_addr);
427 
428  /* Do we need to go through all of our timers and
429  * delete them? To be safe we will try to delete all, but we
430  * should be able to go through and make a guess based
431  * on our state.
432  */
434  if (timer_pending(&asoc->timers[i]) &&
435  del_timer(&asoc->timers[i]))
436  sctp_association_put(asoc);
437  }
438 
439  /* Free peer's cached cookie. */
440  kfree(asoc->peer.cookie);
441  kfree(asoc->peer.peer_random);
442  kfree(asoc->peer.peer_chunks);
443  kfree(asoc->peer.peer_hmacs);
444 
445  /* Release the transport structures. */
446  list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
447  transport = list_entry(pos, struct sctp_transport, transports);
448  list_del(pos);
449  sctp_transport_free(transport);
450  }
451 
452  asoc->peer.transport_count = 0;
453 
455 
456  /* Free pending address space being deleted */
457  if (asoc->asconf_addr_del_pending != NULL)
459 
460  /* AUTH - Free the endpoint shared keys */
462 
463  /* AUTH - Free the association shared key */
465 
466  sctp_association_put(asoc);
467 }
468 
469 /* Cleanup and free up an association. */
470 static void sctp_association_destroy(struct sctp_association *asoc)
471 {
472  SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return);
473 
474  sctp_endpoint_put(asoc->ep);
475  sock_put(asoc->base.sk);
476 
477  if (asoc->assoc_id != 0) {
478  spin_lock_bh(&sctp_assocs_id_lock);
480  spin_unlock_bh(&sctp_assocs_id_lock);
481  }
482 
483  WARN_ON(atomic_read(&asoc->rmem_alloc));
484 
485  if (asoc->base.malloced) {
486  kfree(asoc);
487  SCTP_DBG_OBJCNT_DEC(assoc);
488  }
489 }
490 
491 /* Change the primary destination address for the peer. */
493  struct sctp_transport *transport)
494 {
495  int changeover = 0;
496 
497  /* it's a changeover only if we already have a primary path
498  * that we are changing
499  */
500  if (asoc->peer.primary_path != NULL &&
501  asoc->peer.primary_path != transport)
502  changeover = 1 ;
503 
504  asoc->peer.primary_path = transport;
505 
506  /* Set a default msg_name for events. */
507  memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
508  sizeof(union sctp_addr));
509 
510  /* If the primary path is changing, assume that the
511  * user wants to use this new path.
512  */
513  if ((transport->state == SCTP_ACTIVE) ||
514  (transport->state == SCTP_UNKNOWN))
515  asoc->peer.active_path = transport;
516 
517  /*
518  * SFR-CACC algorithm:
519  * Upon the receipt of a request to change the primary
520  * destination address, on the data structure for the new
521  * primary destination, the sender MUST do the following:
522  *
523  * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
524  * to this destination address earlier. The sender MUST set
525  * CYCLING_CHANGEOVER to indicate that this switch is a
526  * double switch to the same destination address.
527  *
528  * Really, only bother is we have data queued or outstanding on
529  * the association.
530  */
531  if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
532  return;
533 
534  if (transport->cacc.changeover_active)
535  transport->cacc.cycling_changeover = changeover;
536 
537  /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
538  * a changeover has occurred.
539  */
540  transport->cacc.changeover_active = changeover;
541 
542  /* 3) The sender MUST store the next TSN to be sent in
543  * next_tsn_at_change.
544  */
545  transport->cacc.next_tsn_at_change = asoc->next_tsn;
546 }
547 
548 /* Remove a transport from an association. */
550  struct sctp_transport *peer)
551 {
552  struct list_head *pos;
553  struct sctp_transport *transport;
554 
555  SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ",
556  " port: %d\n",
557  asoc,
558  (&peer->ipaddr),
559  ntohs(peer->ipaddr.v4.sin_port));
560 
561  /* If we are to remove the current retran_path, update it
562  * to the next peer before removing this peer from the list.
563  */
564  if (asoc->peer.retran_path == peer)
566 
567  /* Remove this peer from the list. */
568  list_del(&peer->transports);
569 
570  /* Get the first transport of asoc. */
571  pos = asoc->peer.transport_addr_list.next;
572  transport = list_entry(pos, struct sctp_transport, transports);
573 
574  /* Update any entries that match the peer to be deleted. */
575  if (asoc->peer.primary_path == peer)
576  sctp_assoc_set_primary(asoc, transport);
577  if (asoc->peer.active_path == peer)
578  asoc->peer.active_path = transport;
579  if (asoc->peer.retran_path == peer)
580  asoc->peer.retran_path = transport;
581  if (asoc->peer.last_data_from == peer)
582  asoc->peer.last_data_from = transport;
583 
584  /* If we remove the transport an INIT was last sent to, set it to
585  * NULL. Combined with the update of the retran path above, this
586  * will cause the next INIT to be sent to the next available
587  * transport, maintaining the cycle.
588  */
589  if (asoc->init_last_sent_to == peer)
590  asoc->init_last_sent_to = NULL;
591 
592  /* If we remove the transport an SHUTDOWN was last sent to, set it
593  * to NULL. Combined with the update of the retran path above, this
594  * will cause the next SHUTDOWN to be sent to the next available
595  * transport, maintaining the cycle.
596  */
597  if (asoc->shutdown_last_sent_to == peer)
598  asoc->shutdown_last_sent_to = NULL;
599 
600  /* If we remove the transport an ASCONF was last sent to, set it to
601  * NULL.
602  */
603  if (asoc->addip_last_asconf &&
604  asoc->addip_last_asconf->transport == peer)
605  asoc->addip_last_asconf->transport = NULL;
606 
607  /* If we have something on the transmitted list, we have to
608  * save it off. The best place is the active path.
609  */
610  if (!list_empty(&peer->transmitted)) {
611  struct sctp_transport *active = asoc->peer.active_path;
612  struct sctp_chunk *ch;
613 
614  /* Reset the transport of each chunk on this list */
615  list_for_each_entry(ch, &peer->transmitted,
617  ch->transport = NULL;
618  ch->rtt_in_progress = 0;
619  }
620 
621  list_splice_tail_init(&peer->transmitted,
622  &active->transmitted);
623 
624  /* Start a T3 timer here in case it wasn't running so
625  * that these migrated packets have a chance to get
626  * retrnasmitted.
627  */
628  if (!timer_pending(&active->T3_rtx_timer))
629  if (!mod_timer(&active->T3_rtx_timer,
630  jiffies + active->rto))
631  sctp_transport_hold(active);
632  }
633 
634  asoc->peer.transport_count--;
635 
636  sctp_transport_free(peer);
637 }
638 
639 /* Add a transport address to an association. */
641  const union sctp_addr *addr,
642  const gfp_t gfp,
643  const int peer_state)
644 {
645  struct net *net = sock_net(asoc->base.sk);
646  struct sctp_transport *peer;
647  struct sctp_sock *sp;
648  unsigned short port;
649 
650  sp = sctp_sk(asoc->base.sk);
651 
652  /* AF_INET and AF_INET6 share common port field. */
653  port = ntohs(addr->v4.sin_port);
654 
655  SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ",
656  " port: %d state:%d\n",
657  asoc,
658  addr,
659  port,
660  peer_state);
661 
662  /* Set the port if it has not been set yet. */
663  if (0 == asoc->peer.port)
664  asoc->peer.port = port;
665 
666  /* Check to see if this is a duplicate. */
667  peer = sctp_assoc_lookup_paddr(asoc, addr);
668  if (peer) {
669  /* An UNKNOWN state is only set on transports added by
670  * user in sctp_connectx() call. Such transports should be
671  * considered CONFIRMED per RFC 4960, Section 5.4.
672  */
673  if (peer->state == SCTP_UNKNOWN) {
674  peer->state = SCTP_ACTIVE;
675  }
676  return peer;
677  }
678 
679  peer = sctp_transport_new(net, addr, gfp);
680  if (!peer)
681  return NULL;
682 
683  sctp_transport_set_owner(peer, asoc);
684 
685  /* Initialize the peer's heartbeat interval based on the
686  * association configured value.
687  */
688  peer->hbinterval = asoc->hbinterval;
689 
690  /* Set the path max_retrans. */
691  peer->pathmaxrxt = asoc->pathmaxrxt;
692 
693  /* And the partial failure retrnas threshold */
694  peer->pf_retrans = asoc->pf_retrans;
695 
696  /* Initialize the peer's SACK delay timeout based on the
697  * association configured value.
698  */
699  peer->sackdelay = asoc->sackdelay;
700  peer->sackfreq = asoc->sackfreq;
701 
702  /* Enable/disable heartbeat, SACK delay, and path MTU discovery
703  * based on association setting.
704  */
705  peer->param_flags = asoc->param_flags;
706 
707  sctp_transport_route(peer, NULL, sp);
708 
709  /* Initialize the pmtu of the transport. */
710  if (peer->param_flags & SPP_PMTUD_DISABLE) {
711  if (asoc->pathmtu)
712  peer->pathmtu = asoc->pathmtu;
713  else
715  }
716 
717  /* If this is the first transport addr on this association,
718  * initialize the association PMTU to the peer's PMTU.
719  * If not and the current association PMTU is higher than the new
720  * peer's PMTU, reset the association PMTU to the new peer's PMTU.
721  */
722  if (asoc->pathmtu)
723  asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
724  else
725  asoc->pathmtu = peer->pathmtu;
726 
727  SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to "
728  "%d\n", asoc, asoc->pathmtu);
729  peer->pmtu_pending = 0;
730 
731  asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
732 
733  /* The asoc->peer.port might not be meaningful yet, but
734  * initialize the packet structure anyway.
735  */
736  sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
737  asoc->peer.port);
738 
739  /* 7.2.1 Slow-Start
740  *
741  * o The initial cwnd before DATA transmission or after a sufficiently
742  * long idle period MUST be set to
743  * min(4*MTU, max(2*MTU, 4380 bytes))
744  *
745  * o The initial value of ssthresh MAY be arbitrarily high
746  * (for example, implementations MAY use the size of the
747  * receiver advertised window).
748  */
749  peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
750 
751  /* At this point, we may not have the receiver's advertised window,
752  * so initialize ssthresh to the default value and it will be set
753  * later when we process the INIT.
754  */
756 
757  peer->partial_bytes_acked = 0;
758  peer->flight_size = 0;
759  peer->burst_limited = 0;
760 
761  /* Set the transport's RTO.initial value */
762  peer->rto = asoc->rto_initial;
763 
764  /* Set the peer's active state. */
765  peer->state = peer_state;
766 
767  /* Attach the remote transport to our asoc. */
768  list_add_tail(&peer->transports, &asoc->peer.transport_addr_list);
769  asoc->peer.transport_count++;
770 
771  /* If we do not yet have a primary path, set one. */
772  if (!asoc->peer.primary_path) {
773  sctp_assoc_set_primary(asoc, peer);
774  asoc->peer.retran_path = peer;
775  }
776 
777  if (asoc->peer.active_path == asoc->peer.retran_path &&
778  peer->state != SCTP_UNCONFIRMED) {
779  asoc->peer.retran_path = peer;
780  }
781 
782  return peer;
783 }
784 
785 /* Delete a transport address from an association. */
787  const union sctp_addr *addr)
788 {
789  struct list_head *pos;
790  struct list_head *temp;
791  struct sctp_transport *transport;
792 
793  list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
794  transport = list_entry(pos, struct sctp_transport, transports);
795  if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
796  /* Do book keeping for removing the peer and free it. */
797  sctp_assoc_rm_peer(asoc, transport);
798  break;
799  }
800  }
801 }
802 
803 /* Lookup a transport by address. */
805  const struct sctp_association *asoc,
806  const union sctp_addr *address)
807 {
808  struct sctp_transport *t;
809 
810  /* Cycle through all transports searching for a peer address. */
811 
812  list_for_each_entry(t, &asoc->peer.transport_addr_list,
813  transports) {
814  if (sctp_cmp_addr_exact(address, &t->ipaddr))
815  return t;
816  }
817 
818  return NULL;
819 }
820 
821 /* Remove all transports except a give one */
823  struct sctp_transport *primary)
824 {
825  struct sctp_transport *temp;
826  struct sctp_transport *t;
827 
828  list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
829  transports) {
830  /* if the current transport is not the primary one, delete it */
831  if (t != primary)
832  sctp_assoc_rm_peer(asoc, t);
833  }
834 }
835 
836 /* Engage in transport control operations.
837  * Mark the transport up or down and send a notification to the user.
838  * Select and update the new active and retran paths.
839  */
841  struct sctp_transport *transport,
844 {
845  struct sctp_transport *t = NULL;
846  struct sctp_transport *first;
847  struct sctp_transport *second;
848  struct sctp_ulpevent *event;
849  struct sockaddr_storage addr;
850  int spc_state = 0;
851  bool ulp_notify = true;
852 
853  /* Record the transition on the transport. */
854  switch (command) {
855  case SCTP_TRANSPORT_UP:
856  /* If we are moving from UNCONFIRMED state due
857  * to heartbeat success, report the SCTP_ADDR_CONFIRMED
858  * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
859  */
860  if (SCTP_UNCONFIRMED == transport->state &&
861  SCTP_HEARTBEAT_SUCCESS == error)
862  spc_state = SCTP_ADDR_CONFIRMED;
863  else
864  spc_state = SCTP_ADDR_AVAILABLE;
865  /* Don't inform ULP about transition from PF to
866  * active state and set cwnd to 1, see SCTP
867  * Quick failover draft section 5.1, point 5
868  */
869  if (transport->state == SCTP_PF) {
870  ulp_notify = false;
871  transport->cwnd = 1;
872  }
873  transport->state = SCTP_ACTIVE;
874  break;
875 
876  case SCTP_TRANSPORT_DOWN:
877  /* If the transport was never confirmed, do not transition it
878  * to inactive state. Also, release the cached route since
879  * there may be a better route next time.
880  */
881  if (transport->state != SCTP_UNCONFIRMED)
882  transport->state = SCTP_INACTIVE;
883  else {
884  dst_release(transport->dst);
885  transport->dst = NULL;
886  }
887 
888  spc_state = SCTP_ADDR_UNREACHABLE;
889  break;
890 
891  case SCTP_TRANSPORT_PF:
892  transport->state = SCTP_PF;
893  ulp_notify = false;
894  break;
895 
896  default:
897  return;
898  }
899 
900  /* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the
901  * user.
902  */
903  if (ulp_notify) {
904  memset(&addr, 0, sizeof(struct sockaddr_storage));
905  memcpy(&addr, &transport->ipaddr,
906  transport->af_specific->sockaddr_len);
907  event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
908  0, spc_state, error, GFP_ATOMIC);
909  if (event)
910  sctp_ulpq_tail_event(&asoc->ulpq, event);
911  }
912 
913  /* Select new active and retran paths. */
914 
915  /* Look for the two most recently used active transports.
916  *
917  * This code produces the wrong ordering whenever jiffies
918  * rolls over, but we still get usable transports, so we don't
919  * worry about it.
920  */
921  first = NULL; second = NULL;
922 
923  list_for_each_entry(t, &asoc->peer.transport_addr_list,
924  transports) {
925 
926  if ((t->state == SCTP_INACTIVE) ||
927  (t->state == SCTP_UNCONFIRMED) ||
928  (t->state == SCTP_PF))
929  continue;
930  if (!first || t->last_time_heard > first->last_time_heard) {
931  second = first;
932  first = t;
933  }
934  if (!second || t->last_time_heard > second->last_time_heard)
935  second = t;
936  }
937 
938  /* RFC 2960 6.4 Multi-Homed SCTP Endpoints
939  *
940  * By default, an endpoint should always transmit to the
941  * primary path, unless the SCTP user explicitly specifies the
942  * destination transport address (and possibly source
943  * transport address) to use.
944  *
945  * [If the primary is active but not most recent, bump the most
946  * recently used transport.]
947  */
948  if (((asoc->peer.primary_path->state == SCTP_ACTIVE) ||
949  (asoc->peer.primary_path->state == SCTP_UNKNOWN)) &&
950  first != asoc->peer.primary_path) {
951  second = first;
952  first = asoc->peer.primary_path;
953  }
954 
955  /* If we failed to find a usable transport, just camp on the
956  * primary, even if it is inactive.
957  */
958  if (!first) {
959  first = asoc->peer.primary_path;
960  second = asoc->peer.primary_path;
961  }
962 
963  /* Set the active and retran transports. */
964  asoc->peer.active_path = first;
965  asoc->peer.retran_path = second;
966 }
967 
968 /* Hold a reference to an association. */
970 {
971  atomic_inc(&asoc->base.refcnt);
972 }
973 
974 /* Release a reference to an association and cleanup
975  * if there are no more references.
976  */
978 {
979  if (atomic_dec_and_test(&asoc->base.refcnt))
980  sctp_association_destroy(asoc);
981 }
982 
983 /* Allocate the next TSN, Transmission Sequence Number, for the given
984  * association.
985  */
987 {
988  /* From Section 1.6 Serial Number Arithmetic:
989  * Transmission Sequence Numbers wrap around when they reach
990  * 2**32 - 1. That is, the next TSN a DATA chunk MUST use
991  * after transmitting TSN = 2*32 - 1 is TSN = 0.
992  */
993  __u32 retval = asoc->next_tsn;
994  asoc->next_tsn++;
995  asoc->unack_data++;
996 
997  return retval;
998 }
999 
1000 /* Compare two addresses to see if they match. Wildcard addresses
1001  * only match themselves.
1002  */
1003 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
1004  const union sctp_addr *ss2)
1005 {
1006  struct sctp_af *af;
1007 
1008  af = sctp_get_af_specific(ss1->sa.sa_family);
1009  if (unlikely(!af))
1010  return 0;
1011 
1012  return af->cmp_addr(ss1, ss2);
1013 }
1014 
1015 /* Return an ecne chunk to get prepended to a packet.
1016  * Note: We are sly and return a shared, prealloced chunk. FIXME:
1017  * No we don't, but we could/should.
1018  */
1020 {
1021  struct sctp_chunk *chunk;
1022 
1023  /* Send ECNE if needed.
1024  * Not being able to allocate a chunk here is not deadly.
1025  */
1026  if (asoc->need_ecne)
1027  chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn);
1028  else
1029  chunk = NULL;
1030 
1031  return chunk;
1032 }
1033 
1034 /*
1035  * Find which transport this TSN was sent on.
1036  */
1038  __u32 tsn)
1039 {
1040  struct sctp_transport *active;
1041  struct sctp_transport *match;
1042  struct sctp_transport *transport;
1043  struct sctp_chunk *chunk;
1044  __be32 key = htonl(tsn);
1045 
1046  match = NULL;
1047 
1048  /*
1049  * FIXME: In general, find a more efficient data structure for
1050  * searching.
1051  */
1052 
1053  /*
1054  * The general strategy is to search each transport's transmitted
1055  * list. Return which transport this TSN lives on.
1056  *
1057  * Let's be hopeful and check the active_path first.
1058  * Another optimization would be to know if there is only one
1059  * outbound path and not have to look for the TSN at all.
1060  *
1061  */
1062 
1063  active = asoc->peer.active_path;
1064 
1065  list_for_each_entry(chunk, &active->transmitted,
1066  transmitted_list) {
1067 
1068  if (key == chunk->subh.data_hdr->tsn) {
1069  match = active;
1070  goto out;
1071  }
1072  }
1073 
1074  /* If not found, go search all the other transports. */
1075  list_for_each_entry(transport, &asoc->peer.transport_addr_list,
1076  transports) {
1077 
1078  if (transport == active)
1079  break;
1080  list_for_each_entry(chunk, &transport->transmitted,
1081  transmitted_list) {
1082  if (key == chunk->subh.data_hdr->tsn) {
1083  match = transport;
1084  goto out;
1085  }
1086  }
1087  }
1088 out:
1089  return match;
1090 }
1091 
1092 /* Is this the association we are looking for? */
1094  struct net *net,
1095  const union sctp_addr *laddr,
1096  const union sctp_addr *paddr)
1097 {
1098  struct sctp_transport *transport;
1099 
1100  if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
1101  (htons(asoc->peer.port) == paddr->v4.sin_port) &&
1102  net_eq(sock_net(asoc->base.sk), net)) {
1103  transport = sctp_assoc_lookup_paddr(asoc, paddr);
1104  if (!transport)
1105  goto out;
1106 
1107  if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1108  sctp_sk(asoc->base.sk)))
1109  goto out;
1110  }
1111  transport = NULL;
1112 
1113 out:
1114  return transport;
1115 }
1116 
1117 /* Do delayed input processing. This is scheduled by sctp_rcv(). */
1118 static void sctp_assoc_bh_rcv(struct work_struct *work)
1119 {
1120  struct sctp_association *asoc =
1121  container_of(work, struct sctp_association,
1122  base.inqueue.immediate);
1123  struct net *net = sock_net(asoc->base.sk);
1124  struct sctp_endpoint *ep;
1125  struct sctp_chunk *chunk;
1126  struct sctp_inq *inqueue;
1127  int state;
1129  int error = 0;
1130 
1131  /* The association should be held so we should be safe. */
1132  ep = asoc->ep;
1133 
1134  inqueue = &asoc->base.inqueue;
1135  sctp_association_hold(asoc);
1136  while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1137  state = asoc->state;
1138  subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1139 
1140  /* SCTP-AUTH, Section 6.3:
1141  * The receiver has a list of chunk types which it expects
1142  * to be received only after an AUTH-chunk. This list has
1143  * been sent to the peer during the association setup. It
1144  * MUST silently discard these chunks if they are not placed
1145  * after an AUTH chunk in the packet.
1146  */
1147  if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1148  continue;
1149 
1150  /* Remember where the last DATA chunk came from so we
1151  * know where to send the SACK.
1152  */
1153  if (sctp_chunk_is_data(chunk))
1154  asoc->peer.last_data_from = chunk->transport;
1155  else
1157 
1158  if (chunk->transport)
1159  chunk->transport->last_time_heard = jiffies;
1160 
1161  /* Run through the state machine. */
1162  error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1163  state, ep, asoc, chunk, GFP_ATOMIC);
1164 
1165  /* Check to see if the association is freed in response to
1166  * the incoming chunk. If so, get out of the while loop.
1167  */
1168  if (asoc->base.dead)
1169  break;
1170 
1171  /* If there is an error on chunk, discard this packet. */
1172  if (error && chunk)
1173  chunk->pdiscard = 1;
1174  }
1175  sctp_association_put(asoc);
1176 }
1177 
1178 /* This routine moves an association from its old sk to a new sk. */
1179 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1180 {
1181  struct sctp_sock *newsp = sctp_sk(newsk);
1182  struct sock *oldsk = assoc->base.sk;
1183 
1184  /* Delete the association from the old endpoint's list of
1185  * associations.
1186  */
1187  list_del_init(&assoc->asocs);
1188 
1189  /* Decrement the backlog value for a TCP-style socket. */
1190  if (sctp_style(oldsk, TCP))
1191  oldsk->sk_ack_backlog--;
1192 
1193  /* Release references to the old endpoint and the sock. */
1194  sctp_endpoint_put(assoc->ep);
1195  sock_put(assoc->base.sk);
1196 
1197  /* Get a reference to the new endpoint. */
1198  assoc->ep = newsp->ep;
1199  sctp_endpoint_hold(assoc->ep);
1200 
1201  /* Get a reference to the new sock. */
1202  assoc->base.sk = newsk;
1203  sock_hold(assoc->base.sk);
1204 
1205  /* Add the association to the new endpoint's list of associations. */
1206  sctp_endpoint_add_asoc(newsp->ep, assoc);
1207 }
1208 
1209 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */
1211  struct sctp_association *new)
1212 {
1213  struct sctp_transport *trans;
1214  struct list_head *pos, *temp;
1215 
1216  /* Copy in new parameters of peer. */
1217  asoc->c = new->c;
1218  asoc->peer.rwnd = new->peer.rwnd;
1219  asoc->peer.sack_needed = new->peer.sack_needed;
1220  asoc->peer.i = new->peer.i;
1221  sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1222  asoc->peer.i.initial_tsn, GFP_ATOMIC);
1223 
1224  /* Remove any peer addresses not present in the new association. */
1225  list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1226  trans = list_entry(pos, struct sctp_transport, transports);
1227  if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1228  sctp_assoc_rm_peer(asoc, trans);
1229  continue;
1230  }
1231 
1232  if (asoc->state >= SCTP_STATE_ESTABLISHED)
1233  sctp_transport_reset(trans);
1234  }
1235 
1236  /* If the case is A (association restart), use
1237  * initial_tsn as next_tsn. If the case is B, use
1238  * current next_tsn in case data sent to peer
1239  * has been discarded and needs retransmission.
1240  */
1241  if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1242  asoc->next_tsn = new->next_tsn;
1243  asoc->ctsn_ack_point = new->ctsn_ack_point;
1244  asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1245 
1246  /* Reinitialize SSN for both local streams
1247  * and peer's streams.
1248  */
1249  sctp_ssnmap_clear(asoc->ssnmap);
1250 
1251  /* Flush the ULP reassembly and ordered queue.
1252  * Any data there will now be stale and will
1253  * cause problems.
1254  */
1255  sctp_ulpq_flush(&asoc->ulpq);
1256 
1257  /* reset the overall association error count so
1258  * that the restarted association doesn't get torn
1259  * down on the next retransmission timer.
1260  */
1261  asoc->overall_error_count = 0;
1262 
1263  } else {
1264  /* Add any peer addresses from the new association. */
1265  list_for_each_entry(trans, &new->peer.transport_addr_list,
1266  transports) {
1267  if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1268  sctp_assoc_add_peer(asoc, &trans->ipaddr,
1269  GFP_ATOMIC, trans->state);
1270  }
1271 
1272  asoc->ctsn_ack_point = asoc->next_tsn - 1;
1273  asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1274  if (!asoc->ssnmap) {
1275  /* Move the ssnmap. */
1276  asoc->ssnmap = new->ssnmap;
1277  new->ssnmap = NULL;
1278  }
1279 
1280  if (!asoc->assoc_id) {
1281  /* get a new association id since we don't have one
1282  * yet.
1283  */
1285  }
1286  }
1287 
1288  /* SCTP-AUTH: Save the peer parameters from the new assocaitions
1289  * and also move the association shared keys over
1290  */
1291  kfree(asoc->peer.peer_random);
1292  asoc->peer.peer_random = new->peer.peer_random;
1293  new->peer.peer_random = NULL;
1294 
1295  kfree(asoc->peer.peer_chunks);
1296  asoc->peer.peer_chunks = new->peer.peer_chunks;
1297  new->peer.peer_chunks = NULL;
1298 
1299  kfree(asoc->peer.peer_hmacs);
1300  asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1301  new->peer.peer_hmacs = NULL;
1302 
1305 }
1306 
1307 /* Update the retran path for sending a retransmitted packet.
1308  * Round-robin through the active transports, else round-robin
1309  * through the inactive transports as this is the next best thing
1310  * we can try.
1311  */
1313 {
1314  struct sctp_transport *t, *next;
1315  struct list_head *head = &asoc->peer.transport_addr_list;
1316  struct list_head *pos;
1317 
1318  if (asoc->peer.transport_count == 1)
1319  return;
1320 
1321  /* Find the next transport in a round-robin fashion. */
1322  t = asoc->peer.retran_path;
1323  pos = &t->transports;
1324  next = NULL;
1325 
1326  while (1) {
1327  /* Skip the head. */
1328  if (pos->next == head)
1329  pos = head->next;
1330  else
1331  pos = pos->next;
1332 
1333  t = list_entry(pos, struct sctp_transport, transports);
1334 
1335  /* We have exhausted the list, but didn't find any
1336  * other active transports. If so, use the next
1337  * transport.
1338  */
1339  if (t == asoc->peer.retran_path) {
1340  t = next;
1341  break;
1342  }
1343 
1344  /* Try to find an active transport. */
1345 
1346  if ((t->state == SCTP_ACTIVE) ||
1347  (t->state == SCTP_UNKNOWN)) {
1348  break;
1349  } else {
1350  /* Keep track of the next transport in case
1351  * we don't find any active transport.
1352  */
1353  if (t->state != SCTP_UNCONFIRMED && !next)
1354  next = t;
1355  }
1356  }
1357 
1358  if (t)
1359  asoc->peer.retran_path = t;
1360  else
1361  t = asoc->peer.retran_path;
1362 
1363  SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association"
1364  " %p addr: ",
1365  " port: %d\n",
1366  asoc,
1367  (&t->ipaddr),
1368  ntohs(t->ipaddr.v4.sin_port));
1369 }
1370 
1371 /* Choose the transport for sending retransmit packet. */
1373  struct sctp_association *asoc, struct sctp_transport *last_sent_to)
1374 {
1375  /* If this is the first time packet is sent, use the active path,
1376  * else use the retran path. If the last packet was sent over the
1377  * retran path, update the retran path and use it.
1378  */
1379  if (!last_sent_to)
1380  return asoc->peer.active_path;
1381  else {
1382  if (last_sent_to == asoc->peer.retran_path)
1384  return asoc->peer.retran_path;
1385  }
1386 }
1387 
1388 /* Update the association's pmtu and frag_point by going through all the
1389  * transports. This routine is called when a transport's PMTU has changed.
1390  */
1391 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc)
1392 {
1393  struct sctp_transport *t;
1394  __u32 pmtu = 0;
1395 
1396  if (!asoc)
1397  return;
1398 
1399  /* Get the lowest pmtu of all the transports. */
1400  list_for_each_entry(t, &asoc->peer.transport_addr_list,
1401  transports) {
1402  if (t->pmtu_pending && t->dst) {
1403  sctp_transport_update_pmtu(sk, t, dst_mtu(t->dst));
1404  t->pmtu_pending = 0;
1405  }
1406  if (!pmtu || (t->pathmtu < pmtu))
1407  pmtu = t->pathmtu;
1408  }
1409 
1410  if (pmtu) {
1411  asoc->pathmtu = pmtu;
1412  asoc->frag_point = sctp_frag_point(asoc, pmtu);
1413  }
1414 
1415  SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n",
1416  __func__, asoc, asoc->pathmtu, asoc->frag_point);
1417 }
1418 
1419 /* Should we send a SACK to update our peer? */
1420 static inline int sctp_peer_needs_update(struct sctp_association *asoc)
1421 {
1422  struct net *net = sock_net(asoc->base.sk);
1423  switch (asoc->state) {
1428  if ((asoc->rwnd > asoc->a_rwnd) &&
1429  ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1430  (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1431  asoc->pathmtu)))
1432  return 1;
1433  break;
1434  default:
1435  break;
1436  }
1437  return 0;
1438 }
1439 
1440 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1441 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1442 {
1443  struct sctp_chunk *sack;
1444  struct timer_list *timer;
1445 
1446  if (asoc->rwnd_over) {
1447  if (asoc->rwnd_over >= len) {
1448  asoc->rwnd_over -= len;
1449  } else {
1450  asoc->rwnd += (len - asoc->rwnd_over);
1451  asoc->rwnd_over = 0;
1452  }
1453  } else {
1454  asoc->rwnd += len;
1455  }
1456 
1457  /* If we had window pressure, start recovering it
1458  * once our rwnd had reached the accumulated pressure
1459  * threshold. The idea is to recover slowly, but up
1460  * to the initial advertised window.
1461  */
1462  if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1463  int change = min(asoc->pathmtu, asoc->rwnd_press);
1464  asoc->rwnd += change;
1465  asoc->rwnd_press -= change;
1466  }
1467 
1468  SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) "
1469  "- %u\n", __func__, asoc, len, asoc->rwnd,
1470  asoc->rwnd_over, asoc->a_rwnd);
1471 
1472  /* Send a window update SACK if the rwnd has increased by at least the
1473  * minimum of the association's PMTU and half of the receive buffer.
1474  * The algorithm used is similar to the one described in
1475  * Section 4.2.3.3 of RFC 1122.
1476  */
1477  if (sctp_peer_needs_update(asoc)) {
1478  asoc->a_rwnd = asoc->rwnd;
1479  SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p "
1480  "rwnd: %u a_rwnd: %u\n", __func__,
1481  asoc, asoc->rwnd, asoc->a_rwnd);
1482  sack = sctp_make_sack(asoc);
1483  if (!sack)
1484  return;
1485 
1486  asoc->peer.sack_needed = 0;
1487 
1488  sctp_outq_tail(&asoc->outqueue, sack);
1489 
1490  /* Stop the SACK timer. */
1491  timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1492  if (timer_pending(timer) && del_timer(timer))
1493  sctp_association_put(asoc);
1494  }
1495 }
1496 
1497 /* Decrease asoc's rwnd by len. */
1498 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1499 {
1500  int rx_count;
1501  int over = 0;
1502 
1503  SCTP_ASSERT(asoc->rwnd, "rwnd zero", return);
1504  SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return);
1505 
1506  if (asoc->ep->rcvbuf_policy)
1507  rx_count = atomic_read(&asoc->rmem_alloc);
1508  else
1509  rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1510 
1511  /* If we've reached or overflowed our receive buffer, announce
1512  * a 0 rwnd if rwnd would still be positive. Store the
1513  * the pottential pressure overflow so that the window can be restored
1514  * back to original value.
1515  */
1516  if (rx_count >= asoc->base.sk->sk_rcvbuf)
1517  over = 1;
1518 
1519  if (asoc->rwnd >= len) {
1520  asoc->rwnd -= len;
1521  if (over) {
1522  asoc->rwnd_press += asoc->rwnd;
1523  asoc->rwnd = 0;
1524  }
1525  } else {
1526  asoc->rwnd_over = len - asoc->rwnd;
1527  asoc->rwnd = 0;
1528  }
1529  SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u, %u)\n",
1530  __func__, asoc, len, asoc->rwnd,
1531  asoc->rwnd_over, asoc->rwnd_press);
1532 }
1533 
1534 /* Build the bind address list for the association based on info from the
1535  * local endpoint and the remote peer.
1536  */
1538  sctp_scope_t scope, gfp_t gfp)
1539 {
1540  int flags;
1541 
1542  /* Use scoping rules to determine the subset of addresses from
1543  * the endpoint.
1544  */
1545  flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1546  if (asoc->peer.ipv4_address)
1547  flags |= SCTP_ADDR4_PEERSUPP;
1548  if (asoc->peer.ipv6_address)
1549  flags |= SCTP_ADDR6_PEERSUPP;
1550 
1551  return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1552  &asoc->base.bind_addr,
1553  &asoc->ep->base.bind_addr,
1554  scope, gfp, flags);
1555 }
1556 
1557 /* Build the association's bind address list from the cookie. */
1559  struct sctp_cookie *cookie,
1560  gfp_t gfp)
1561 {
1562  int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1563  int var_size3 = cookie->raw_addr_list_len;
1564  __u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1565 
1566  return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1567  asoc->ep->base.bind_addr.port, gfp);
1568 }
1569 
1570 /* Lookup laddr in the bind address list of an association. */
1572  const union sctp_addr *laddr)
1573 {
1574  int found = 0;
1575 
1576  if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1577  sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1578  sctp_sk(asoc->base.sk)))
1579  found = 1;
1580 
1581  return found;
1582 }
1583 
1584 /* Set an association id for a given association */
1586 {
1587  int assoc_id;
1588  int error = 0;
1589 
1590  /* If the id is already assigned, keep it. */
1591  if (asoc->assoc_id)
1592  return error;
1593 retry:
1594  if (unlikely(!idr_pre_get(&sctp_assocs_id, gfp)))
1595  return -ENOMEM;
1596 
1597  spin_lock_bh(&sctp_assocs_id_lock);
1598  error = idr_get_new_above(&sctp_assocs_id, (void *)asoc,
1599  idr_low, &assoc_id);
1600  if (!error) {
1601  idr_low = assoc_id + 1;
1602  if (idr_low == INT_MAX)
1603  idr_low = 1;
1604  }
1605  spin_unlock_bh(&sctp_assocs_id_lock);
1606  if (error == -EAGAIN)
1607  goto retry;
1608  else if (error)
1609  return error;
1610 
1611  asoc->assoc_id = (sctp_assoc_t) assoc_id;
1612  return error;
1613 }
1614 
1615 /* Free the ASCONF queue */
1616 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1617 {
1618  struct sctp_chunk *asconf;
1619  struct sctp_chunk *tmp;
1620 
1621  list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1622  list_del_init(&asconf->list);
1623  sctp_chunk_free(asconf);
1624  }
1625 }
1626 
1627 /* Free asconf_ack cache */
1628 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1629 {
1630  struct sctp_chunk *ack;
1631  struct sctp_chunk *tmp;
1632 
1633  list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1634  transmitted_list) {
1635  list_del_init(&ack->transmitted_list);
1636  sctp_chunk_free(ack);
1637  }
1638 }
1639 
1640 /* Clean up the ASCONF_ACK queue */
1642 {
1643  struct sctp_chunk *ack;
1644  struct sctp_chunk *tmp;
1645 
1646  /* We can remove all the entries from the queue up to
1647  * the "Peer-Sequence-Number".
1648  */
1649  list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1650  transmitted_list) {
1651  if (ack->subh.addip_hdr->serial ==
1652  htonl(asoc->peer.addip_serial))
1653  break;
1654 
1655  list_del_init(&ack->transmitted_list);
1656  sctp_chunk_free(ack);
1657  }
1658 }
1659 
1660 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1662  const struct sctp_association *asoc,
1663  __be32 serial)
1664 {
1665  struct sctp_chunk *ack;
1666 
1667  /* Walk through the list of cached ASCONF-ACKs and find the
1668  * ack chunk whose serial number matches that of the request.
1669  */
1671  if (ack->subh.addip_hdr->serial == serial) {
1672  sctp_chunk_hold(ack);
1673  return ack;
1674  }
1675  }
1676 
1677  return NULL;
1678 }
1679 
1681 {
1682  /* Free any cached ASCONF_ACK chunk. */
1683  sctp_assoc_free_asconf_acks(asoc);
1684 
1685  /* Free the ASCONF queue. */
1686  sctp_assoc_free_asconf_queue(asoc);
1687 
1688  /* Free any cached ASCONF chunk. */
1689  if (asoc->addip_last_asconf)
1691 }