Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
au1xmmc.c
Go to the documentation of this file.
1 /*
2  * linux/drivers/mmc/host/au1xmmc.c - AU1XX0 MMC driver
3  *
4  * Copyright (c) 2005, Advanced Micro Devices, Inc.
5  *
6  * Developed with help from the 2.4.30 MMC AU1XXX controller including
7  * the following copyright notices:
8  * Copyright (c) 2003-2004 Embedded Edge, LLC.
9  * Portions Copyright (C) 2002 Embedix, Inc
10  * Copyright 2002 Hewlett-Packard Company
11 
12  * 2.6 version of this driver inspired by:
13  * (drivers/mmc/wbsd.c) Copyright (C) 2004-2005 Pierre Ossman,
14  * All Rights Reserved.
15  * (drivers/mmc/pxa.c) Copyright (C) 2003 Russell King,
16  * All Rights Reserved.
17  *
18 
19  * This program is free software; you can redistribute it and/or modify
20  * it under the terms of the GNU General Public License version 2 as
21  * published by the Free Software Foundation.
22  */
23 
24 /* Why don't we use the SD controllers' carddetect feature?
25  *
26  * From the AU1100 MMC application guide:
27  * If the Au1100-based design is intended to support both MultiMediaCards
28  * and 1- or 4-data bit SecureDigital cards, then the solution is to
29  * connect a weak (560KOhm) pull-up resistor to connector pin 1.
30  * In doing so, a MMC card never enters SPI-mode communications,
31  * but now the SecureDigital card-detect feature of CD/DAT3 is ineffective
32  * (the low to high transition will not occur).
33  */
34 
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/platform_device.h>
38 #include <linux/mm.h>
39 #include <linux/interrupt.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/scatterlist.h>
42 #include <linux/leds.h>
43 #include <linux/mmc/host.h>
44 #include <linux/slab.h>
45 
46 #include <asm/io.h>
47 #include <asm/mach-au1x00/au1000.h>
50 
51 #define DRIVER_NAME "au1xxx-mmc"
52 
53 /* Set this to enable special debugging macros */
54 /* #define DEBUG */
55 
56 #ifdef DEBUG
57 #define DBG(fmt, idx, args...) \
58  pr_debug("au1xmmc(%d): DEBUG: " fmt, idx, ##args)
59 #else
60 #define DBG(fmt, idx, args...) do {} while (0)
61 #endif
62 
63 /* Hardware definitions */
64 #define AU1XMMC_DESCRIPTOR_COUNT 1
65 
66 /* max DMA seg size: 64KB on Au1100, 4MB on Au1200 */
67 #define AU1100_MMC_DESCRIPTOR_SIZE 0x0000ffff
68 #define AU1200_MMC_DESCRIPTOR_SIZE 0x003fffff
69 
70 #define AU1XMMC_OCR (MMC_VDD_27_28 | MMC_VDD_28_29 | MMC_VDD_29_30 | \
71  MMC_VDD_30_31 | MMC_VDD_31_32 | MMC_VDD_32_33 | \
72  MMC_VDD_33_34 | MMC_VDD_34_35 | MMC_VDD_35_36)
73 
74 /* This gives us a hard value for the stop command that we can write directly
75  * to the command register.
76  */
77 #define STOP_CMD \
78  (SD_CMD_RT_1B | SD_CMD_CT_7 | (0xC << SD_CMD_CI_SHIFT) | SD_CMD_GO)
79 
80 /* This is the set of interrupts that we configure by default. */
81 #define AU1XMMC_INTERRUPTS \
82  (SD_CONFIG_SC | SD_CONFIG_DT | SD_CONFIG_RAT | \
83  SD_CONFIG_CR | SD_CONFIG_I)
84 
85 /* The poll event (looking for insert/remove events runs twice a second. */
86 #define AU1XMMC_DETECT_TIMEOUT (HZ/2)
87 
88 struct au1xmmc_host {
89  struct mmc_host *mmc;
90  struct mmc_request *mrq;
91 
97 
98  int status;
99 
100  struct {
101  int len;
102  int dir;
103  } dma;
104 
105  struct {
106  int index;
107  int offset;
108  int len;
109  } pio;
110 
113 
114  int irq;
115 
120  struct resource *ioarea;
121 };
122 
123 /* Status flags used by the host structure */
124 #define HOST_F_XMIT 0x0001
125 #define HOST_F_RECV 0x0002
126 #define HOST_F_DMA 0x0010
127 #define HOST_F_DBDMA 0x0020
128 #define HOST_F_ACTIVE 0x0100
129 #define HOST_F_STOP 0x1000
130 
131 #define HOST_S_IDLE 0x0001
132 #define HOST_S_CMD 0x0002
133 #define HOST_S_DATA 0x0003
134 #define HOST_S_STOP 0x0004
135 
136 /* Easy access macros */
137 #define HOST_STATUS(h) ((h)->iobase + SD_STATUS)
138 #define HOST_CONFIG(h) ((h)->iobase + SD_CONFIG)
139 #define HOST_ENABLE(h) ((h)->iobase + SD_ENABLE)
140 #define HOST_TXPORT(h) ((h)->iobase + SD_TXPORT)
141 #define HOST_RXPORT(h) ((h)->iobase + SD_RXPORT)
142 #define HOST_CMDARG(h) ((h)->iobase + SD_CMDARG)
143 #define HOST_BLKSIZE(h) ((h)->iobase + SD_BLKSIZE)
144 #define HOST_CMD(h) ((h)->iobase + SD_CMD)
145 #define HOST_CONFIG2(h) ((h)->iobase + SD_CONFIG2)
146 #define HOST_TIMEOUT(h) ((h)->iobase + SD_TIMEOUT)
147 #define HOST_DEBUG(h) ((h)->iobase + SD_DEBUG)
148 
149 #define DMA_CHANNEL(h) \
150  (((h)->flags & HOST_F_XMIT) ? (h)->tx_chan : (h)->rx_chan)
151 
152 static inline int has_dbdma(void)
153 {
154  switch (alchemy_get_cputype()) {
155  case ALCHEMY_CPU_AU1200:
156  case ALCHEMY_CPU_AU1300:
157  return 1;
158  default:
159  return 0;
160  }
161 }
162 
163 static inline void IRQ_ON(struct au1xmmc_host *host, u32 mask)
164 {
165  u32 val = au_readl(HOST_CONFIG(host));
166  val |= mask;
167  au_writel(val, HOST_CONFIG(host));
168  au_sync();
169 }
170 
171 static inline void FLUSH_FIFO(struct au1xmmc_host *host)
172 {
173  u32 val = au_readl(HOST_CONFIG2(host));
174 
175  au_writel(val | SD_CONFIG2_FF, HOST_CONFIG2(host));
176  au_sync_delay(1);
177 
178  /* SEND_STOP will turn off clock control - this re-enables it */
179  val &= ~SD_CONFIG2_DF;
180 
181  au_writel(val, HOST_CONFIG2(host));
182  au_sync();
183 }
184 
185 static inline void IRQ_OFF(struct au1xmmc_host *host, u32 mask)
186 {
187  u32 val = au_readl(HOST_CONFIG(host));
188  val &= ~mask;
189  au_writel(val, HOST_CONFIG(host));
190  au_sync();
191 }
192 
193 static inline void SEND_STOP(struct au1xmmc_host *host)
194 {
195  u32 config2;
196 
197  WARN_ON(host->status != HOST_S_DATA);
198  host->status = HOST_S_STOP;
199 
200  config2 = au_readl(HOST_CONFIG2(host));
201  au_writel(config2 | SD_CONFIG2_DF, HOST_CONFIG2(host));
202  au_sync();
203 
204  /* Send the stop command */
205  au_writel(STOP_CMD, HOST_CMD(host));
206 }
207 
208 static void au1xmmc_set_power(struct au1xmmc_host *host, int state)
209 {
210  if (host->platdata && host->platdata->set_power)
211  host->platdata->set_power(host->mmc, state);
212 }
213 
214 static int au1xmmc_card_inserted(struct mmc_host *mmc)
215 {
216  struct au1xmmc_host *host = mmc_priv(mmc);
217 
218  if (host->platdata && host->platdata->card_inserted)
219  return !!host->platdata->card_inserted(host->mmc);
220 
221  return -ENOSYS;
222 }
223 
224 static int au1xmmc_card_readonly(struct mmc_host *mmc)
225 {
226  struct au1xmmc_host *host = mmc_priv(mmc);
227 
228  if (host->platdata && host->platdata->card_readonly)
229  return !!host->platdata->card_readonly(mmc);
230 
231  return -ENOSYS;
232 }
233 
234 static void au1xmmc_finish_request(struct au1xmmc_host *host)
235 {
236  struct mmc_request *mrq = host->mrq;
237 
238  host->mrq = NULL;
239  host->flags &= HOST_F_ACTIVE | HOST_F_DMA;
240 
241  host->dma.len = 0;
242  host->dma.dir = 0;
243 
244  host->pio.index = 0;
245  host->pio.offset = 0;
246  host->pio.len = 0;
247 
248  host->status = HOST_S_IDLE;
249 
250  mmc_request_done(host->mmc, mrq);
251 }
252 
253 static void au1xmmc_tasklet_finish(unsigned long param)
254 {
255  struct au1xmmc_host *host = (struct au1xmmc_host *) param;
256  au1xmmc_finish_request(host);
257 }
258 
259 static int au1xmmc_send_command(struct au1xmmc_host *host, int wait,
260  struct mmc_command *cmd, struct mmc_data *data)
261 {
262  u32 mmccmd = (cmd->opcode << SD_CMD_CI_SHIFT);
263 
264  switch (mmc_resp_type(cmd)) {
265  case MMC_RSP_NONE:
266  break;
267  case MMC_RSP_R1:
268  mmccmd |= SD_CMD_RT_1;
269  break;
270  case MMC_RSP_R1B:
271  mmccmd |= SD_CMD_RT_1B;
272  break;
273  case MMC_RSP_R2:
274  mmccmd |= SD_CMD_RT_2;
275  break;
276  case MMC_RSP_R3:
277  mmccmd |= SD_CMD_RT_3;
278  break;
279  default:
280  pr_info("au1xmmc: unhandled response type %02x\n",
281  mmc_resp_type(cmd));
282  return -EINVAL;
283  }
284 
285  if (data) {
286  if (data->flags & MMC_DATA_READ) {
287  if (data->blocks > 1)
288  mmccmd |= SD_CMD_CT_4;
289  else
290  mmccmd |= SD_CMD_CT_2;
291  } else if (data->flags & MMC_DATA_WRITE) {
292  if (data->blocks > 1)
293  mmccmd |= SD_CMD_CT_3;
294  else
295  mmccmd |= SD_CMD_CT_1;
296  }
297  }
298 
299  au_writel(cmd->arg, HOST_CMDARG(host));
300  au_sync();
301 
302  if (wait)
303  IRQ_OFF(host, SD_CONFIG_CR);
304 
305  au_writel((mmccmd | SD_CMD_GO), HOST_CMD(host));
306  au_sync();
307 
308  /* Wait for the command to go on the line */
309  while (au_readl(HOST_CMD(host)) & SD_CMD_GO)
310  /* nop */;
311 
312  /* Wait for the command to come back */
313  if (wait) {
314  u32 status = au_readl(HOST_STATUS(host));
315 
316  while (!(status & SD_STATUS_CR))
317  status = au_readl(HOST_STATUS(host));
318 
319  /* Clear the CR status */
320  au_writel(SD_STATUS_CR, HOST_STATUS(host));
321 
322  IRQ_ON(host, SD_CONFIG_CR);
323  }
324 
325  return 0;
326 }
327 
328 static void au1xmmc_data_complete(struct au1xmmc_host *host, u32 status)
329 {
330  struct mmc_request *mrq = host->mrq;
331  struct mmc_data *data;
332  u32 crc;
333 
334  WARN_ON((host->status != HOST_S_DATA) && (host->status != HOST_S_STOP));
335 
336  if (host->mrq == NULL)
337  return;
338 
339  data = mrq->cmd->data;
340 
341  if (status == 0)
342  status = au_readl(HOST_STATUS(host));
343 
344  /* The transaction is really over when the SD_STATUS_DB bit is clear */
345  while ((host->flags & HOST_F_XMIT) && (status & SD_STATUS_DB))
346  status = au_readl(HOST_STATUS(host));
347 
348  data->error = 0;
349  dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, host->dma.dir);
350 
351  /* Process any errors */
352  crc = (status & (SD_STATUS_WC | SD_STATUS_RC));
353  if (host->flags & HOST_F_XMIT)
354  crc |= ((status & 0x07) == 0x02) ? 0 : 1;
355 
356  if (crc)
357  data->error = -EILSEQ;
358 
359  /* Clear the CRC bits */
360  au_writel(SD_STATUS_WC | SD_STATUS_RC, HOST_STATUS(host));
361 
362  data->bytes_xfered = 0;
363 
364  if (!data->error) {
365  if (host->flags & (HOST_F_DMA | HOST_F_DBDMA)) {
366  u32 chan = DMA_CHANNEL(host);
367 
368  chan_tab_t *c = *((chan_tab_t **)chan);
370  data->bytes_xfered = cp->ddma_bytecnt;
371  } else
372  data->bytes_xfered =
373  (data->blocks * data->blksz) - host->pio.len;
374  }
375 
376  au1xmmc_finish_request(host);
377 }
378 
379 static void au1xmmc_tasklet_data(unsigned long param)
380 {
381  struct au1xmmc_host *host = (struct au1xmmc_host *)param;
382 
383  u32 status = au_readl(HOST_STATUS(host));
384  au1xmmc_data_complete(host, status);
385 }
386 
387 #define AU1XMMC_MAX_TRANSFER 8
388 
389 static void au1xmmc_send_pio(struct au1xmmc_host *host)
390 {
391  struct mmc_data *data;
392  int sg_len, max, count;
393  unsigned char *sg_ptr, val;
394  u32 status;
395  struct scatterlist *sg;
396 
397  data = host->mrq->data;
398 
399  if (!(host->flags & HOST_F_XMIT))
400  return;
401 
402  /* This is the pointer to the data buffer */
403  sg = &data->sg[host->pio.index];
404  sg_ptr = sg_virt(sg) + host->pio.offset;
405 
406  /* This is the space left inside the buffer */
407  sg_len = data->sg[host->pio.index].length - host->pio.offset;
408 
409  /* Check if we need less than the size of the sg_buffer */
410  max = (sg_len > host->pio.len) ? host->pio.len : sg_len;
411  if (max > AU1XMMC_MAX_TRANSFER)
412  max = AU1XMMC_MAX_TRANSFER;
413 
414  for (count = 0; count < max; count++) {
415  status = au_readl(HOST_STATUS(host));
416 
417  if (!(status & SD_STATUS_TH))
418  break;
419 
420  val = *sg_ptr++;
421 
422  au_writel((unsigned long)val, HOST_TXPORT(host));
423  au_sync();
424  }
425 
426  host->pio.len -= count;
427  host->pio.offset += count;
428 
429  if (count == sg_len) {
430  host->pio.index++;
431  host->pio.offset = 0;
432  }
433 
434  if (host->pio.len == 0) {
435  IRQ_OFF(host, SD_CONFIG_TH);
436 
437  if (host->flags & HOST_F_STOP)
438  SEND_STOP(host);
439 
440  tasklet_schedule(&host->data_task);
441  }
442 }
443 
444 static void au1xmmc_receive_pio(struct au1xmmc_host *host)
445 {
446  struct mmc_data *data;
447  int max, count, sg_len = 0;
448  unsigned char *sg_ptr = NULL;
449  u32 status, val;
450  struct scatterlist *sg;
451 
452  data = host->mrq->data;
453 
454  if (!(host->flags & HOST_F_RECV))
455  return;
456 
457  max = host->pio.len;
458 
459  if (host->pio.index < host->dma.len) {
460  sg = &data->sg[host->pio.index];
461  sg_ptr = sg_virt(sg) + host->pio.offset;
462 
463  /* This is the space left inside the buffer */
464  sg_len = sg_dma_len(&data->sg[host->pio.index]) - host->pio.offset;
465 
466  /* Check if we need less than the size of the sg_buffer */
467  if (sg_len < max)
468  max = sg_len;
469  }
470 
471  if (max > AU1XMMC_MAX_TRANSFER)
472  max = AU1XMMC_MAX_TRANSFER;
473 
474  for (count = 0; count < max; count++) {
475  status = au_readl(HOST_STATUS(host));
476 
477  if (!(status & SD_STATUS_NE))
478  break;
479 
480  if (status & SD_STATUS_RC) {
481  DBG("RX CRC Error [%d + %d].\n", host->pdev->id,
482  host->pio.len, count);
483  break;
484  }
485 
486  if (status & SD_STATUS_RO) {
487  DBG("RX Overrun [%d + %d]\n", host->pdev->id,
488  host->pio.len, count);
489  break;
490  }
491  else if (status & SD_STATUS_RU) {
492  DBG("RX Underrun [%d + %d]\n", host->pdev->id,
493  host->pio.len, count);
494  break;
495  }
496 
497  val = au_readl(HOST_RXPORT(host));
498 
499  if (sg_ptr)
500  *sg_ptr++ = (unsigned char)(val & 0xFF);
501  }
502 
503  host->pio.len -= count;
504  host->pio.offset += count;
505 
506  if (sg_len && count == sg_len) {
507  host->pio.index++;
508  host->pio.offset = 0;
509  }
510 
511  if (host->pio.len == 0) {
512  /* IRQ_OFF(host, SD_CONFIG_RA | SD_CONFIG_RF); */
513  IRQ_OFF(host, SD_CONFIG_NE);
514 
515  if (host->flags & HOST_F_STOP)
516  SEND_STOP(host);
517 
518  tasklet_schedule(&host->data_task);
519  }
520 }
521 
522 /* This is called when a command has been completed - grab the response
523  * and check for errors. Then start the data transfer if it is indicated.
524  */
525 static void au1xmmc_cmd_complete(struct au1xmmc_host *host, u32 status)
526 {
527  struct mmc_request *mrq = host->mrq;
528  struct mmc_command *cmd;
529  u32 r[4];
530  int i, trans;
531 
532  if (!host->mrq)
533  return;
534 
535  cmd = mrq->cmd;
536  cmd->error = 0;
537 
538  if (cmd->flags & MMC_RSP_PRESENT) {
539  if (cmd->flags & MMC_RSP_136) {
540  r[0] = au_readl(host->iobase + SD_RESP3);
541  r[1] = au_readl(host->iobase + SD_RESP2);
542  r[2] = au_readl(host->iobase + SD_RESP1);
543  r[3] = au_readl(host->iobase + SD_RESP0);
544 
545  /* The CRC is omitted from the response, so really
546  * we only got 120 bytes, but the engine expects
547  * 128 bits, so we have to shift things up.
548  */
549  for (i = 0; i < 4; i++) {
550  cmd->resp[i] = (r[i] & 0x00FFFFFF) << 8;
551  if (i != 3)
552  cmd->resp[i] |= (r[i + 1] & 0xFF000000) >> 24;
553  }
554  } else {
555  /* Techincally, we should be getting all 48 bits of
556  * the response (SD_RESP1 + SD_RESP2), but because
557  * our response omits the CRC, our data ends up
558  * being shifted 8 bits to the right. In this case,
559  * that means that the OSR data starts at bit 31,
560  * so we can just read RESP0 and return that.
561  */
562  cmd->resp[0] = au_readl(host->iobase + SD_RESP0);
563  }
564  }
565 
566  /* Figure out errors */
567  if (status & (SD_STATUS_SC | SD_STATUS_WC | SD_STATUS_RC))
568  cmd->error = -EILSEQ;
569 
570  trans = host->flags & (HOST_F_XMIT | HOST_F_RECV);
571 
572  if (!trans || cmd->error) {
574  tasklet_schedule(&host->finish_task);
575  return;
576  }
577 
578  host->status = HOST_S_DATA;
579 
580  if ((host->flags & (HOST_F_DMA | HOST_F_DBDMA))) {
581  u32 channel = DMA_CHANNEL(host);
582 
583  /* Start the DBDMA as soon as the buffer gets something in it */
584 
585  if (host->flags & HOST_F_RECV) {
586  u32 mask = SD_STATUS_DB | SD_STATUS_NE;
587 
588  while((status & mask) != mask)
589  status = au_readl(HOST_STATUS(host));
590  }
591 
592  au1xxx_dbdma_start(channel);
593  }
594 }
595 
596 static void au1xmmc_set_clock(struct au1xmmc_host *host, int rate)
597 {
598  unsigned int pbus = get_au1x00_speed();
599  unsigned int divisor;
600  u32 config;
601 
602  /* From databook:
603  * divisor = ((((cpuclock / sbus_divisor) / 2) / mmcclock) / 2) - 1
604  */
605  pbus /= ((au_readl(SYS_POWERCTRL) & 0x3) + 2);
606  pbus /= 2;
607  divisor = ((pbus / rate) / 2) - 1;
608 
609  config = au_readl(HOST_CONFIG(host));
610 
611  config &= ~(SD_CONFIG_DIV);
612  config |= (divisor & SD_CONFIG_DIV) | SD_CONFIG_DE;
613 
614  au_writel(config, HOST_CONFIG(host));
615  au_sync();
616 }
617 
618 static int au1xmmc_prepare_data(struct au1xmmc_host *host,
619  struct mmc_data *data)
620 {
621  int datalen = data->blocks * data->blksz;
622 
623  if (data->flags & MMC_DATA_READ)
624  host->flags |= HOST_F_RECV;
625  else
626  host->flags |= HOST_F_XMIT;
627 
628  if (host->mrq->stop)
629  host->flags |= HOST_F_STOP;
630 
631  host->dma.dir = DMA_BIDIRECTIONAL;
632 
633  host->dma.len = dma_map_sg(mmc_dev(host->mmc), data->sg,
634  data->sg_len, host->dma.dir);
635 
636  if (host->dma.len == 0)
637  return -ETIMEDOUT;
638 
639  au_writel(data->blksz - 1, HOST_BLKSIZE(host));
640 
641  if (host->flags & (HOST_F_DMA | HOST_F_DBDMA)) {
642  int i;
643  u32 channel = DMA_CHANNEL(host);
644 
645  au1xxx_dbdma_stop(channel);
646 
647  for (i = 0; i < host->dma.len; i++) {
648  u32 ret = 0, flags = DDMA_FLAGS_NOIE;
649  struct scatterlist *sg = &data->sg[i];
650  int sg_len = sg->length;
651 
652  int len = (datalen > sg_len) ? sg_len : datalen;
653 
654  if (i == host->dma.len - 1)
656 
657  if (host->flags & HOST_F_XMIT) {
658  ret = au1xxx_dbdma_put_source(channel,
659  sg_phys(sg), len, flags);
660  } else {
661  ret = au1xxx_dbdma_put_dest(channel,
662  sg_phys(sg), len, flags);
663  }
664 
665  if (!ret)
666  goto dataerr;
667 
668  datalen -= len;
669  }
670  } else {
671  host->pio.index = 0;
672  host->pio.offset = 0;
673  host->pio.len = datalen;
674 
675  if (host->flags & HOST_F_XMIT)
676  IRQ_ON(host, SD_CONFIG_TH);
677  else
678  IRQ_ON(host, SD_CONFIG_NE);
679  /* IRQ_ON(host, SD_CONFIG_RA | SD_CONFIG_RF); */
680  }
681 
682  return 0;
683 
684 dataerr:
685  dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
686  host->dma.dir);
687  return -ETIMEDOUT;
688 }
689 
690 /* This actually starts a command or data transaction */
691 static void au1xmmc_request(struct mmc_host* mmc, struct mmc_request* mrq)
692 {
693  struct au1xmmc_host *host = mmc_priv(mmc);
694  int ret = 0;
695 
697  WARN_ON(host->status != HOST_S_IDLE);
698 
699  host->mrq = mrq;
700  host->status = HOST_S_CMD;
701 
702  /* fail request immediately if no card is present */
703  if (0 == au1xmmc_card_inserted(mmc)) {
704  mrq->cmd->error = -ENOMEDIUM;
705  au1xmmc_finish_request(host);
706  return;
707  }
708 
709  if (mrq->data) {
710  FLUSH_FIFO(host);
711  ret = au1xmmc_prepare_data(host, mrq->data);
712  }
713 
714  if (!ret)
715  ret = au1xmmc_send_command(host, 0, mrq->cmd, mrq->data);
716 
717  if (ret) {
718  mrq->cmd->error = ret;
719  au1xmmc_finish_request(host);
720  }
721 }
722 
723 static void au1xmmc_reset_controller(struct au1xmmc_host *host)
724 {
725  /* Apply the clock */
726  au_writel(SD_ENABLE_CE, HOST_ENABLE(host));
727  au_sync_delay(1);
728 
729  au_writel(SD_ENABLE_R | SD_ENABLE_CE, HOST_ENABLE(host));
730  au_sync_delay(5);
731 
732  au_writel(~0, HOST_STATUS(host));
733  au_sync();
734 
735  au_writel(0, HOST_BLKSIZE(host));
736  au_writel(0x001fffff, HOST_TIMEOUT(host));
737  au_sync();
738 
739  au_writel(SD_CONFIG2_EN, HOST_CONFIG2(host));
740  au_sync();
741 
742  au_writel(SD_CONFIG2_EN | SD_CONFIG2_FF, HOST_CONFIG2(host));
743  au_sync_delay(1);
744 
745  au_writel(SD_CONFIG2_EN, HOST_CONFIG2(host));
746  au_sync();
747 
748  /* Configure interrupts */
749  au_writel(AU1XMMC_INTERRUPTS, HOST_CONFIG(host));
750  au_sync();
751 }
752 
753 
754 static void au1xmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
755 {
756  struct au1xmmc_host *host = mmc_priv(mmc);
757  u32 config2;
758 
759  if (ios->power_mode == MMC_POWER_OFF)
760  au1xmmc_set_power(host, 0);
761  else if (ios->power_mode == MMC_POWER_ON) {
762  au1xmmc_set_power(host, 1);
763  }
764 
765  if (ios->clock && ios->clock != host->clock) {
766  au1xmmc_set_clock(host, ios->clock);
767  host->clock = ios->clock;
768  }
769 
770  config2 = au_readl(HOST_CONFIG2(host));
771  switch (ios->bus_width) {
772  case MMC_BUS_WIDTH_8:
773  config2 |= SD_CONFIG2_BB;
774  break;
775  case MMC_BUS_WIDTH_4:
776  config2 &= ~SD_CONFIG2_BB;
777  config2 |= SD_CONFIG2_WB;
778  break;
779  case MMC_BUS_WIDTH_1:
780  config2 &= ~(SD_CONFIG2_WB | SD_CONFIG2_BB);
781  break;
782  }
783  au_writel(config2, HOST_CONFIG2(host));
784  au_sync();
785 }
786 
787 #define STATUS_TIMEOUT (SD_STATUS_RAT | SD_STATUS_DT)
788 #define STATUS_DATA_IN (SD_STATUS_NE)
789 #define STATUS_DATA_OUT (SD_STATUS_TH)
790 
791 static irqreturn_t au1xmmc_irq(int irq, void *dev_id)
792 {
793  struct au1xmmc_host *host = dev_id;
794  u32 status;
795 
796  status = au_readl(HOST_STATUS(host));
797 
798  if (!(status & SD_STATUS_I))
799  return IRQ_NONE; /* not ours */
800 
801  if (status & SD_STATUS_SI) /* SDIO */
802  mmc_signal_sdio_irq(host->mmc);
803 
804  if (host->mrq && (status & STATUS_TIMEOUT)) {
805  if (status & SD_STATUS_RAT)
806  host->mrq->cmd->error = -ETIMEDOUT;
807  else if (status & SD_STATUS_DT)
808  host->mrq->data->error = -ETIMEDOUT;
809 
810  /* In PIO mode, interrupts might still be enabled */
812 
813  /* IRQ_OFF(host, SD_CONFIG_TH | SD_CONFIG_RA | SD_CONFIG_RF); */
814  tasklet_schedule(&host->finish_task);
815  }
816 #if 0
817  else if (status & SD_STATUS_DD) {
818  /* Sometimes we get a DD before a NE in PIO mode */
819  if (!(host->flags & HOST_F_DMA) && (status & SD_STATUS_NE))
820  au1xmmc_receive_pio(host);
821  else {
822  au1xmmc_data_complete(host, status);
823  /* tasklet_schedule(&host->data_task); */
824  }
825  }
826 #endif
827  else if (status & SD_STATUS_CR) {
828  if (host->status == HOST_S_CMD)
829  au1xmmc_cmd_complete(host, status);
830 
831  } else if (!(host->flags & HOST_F_DMA)) {
832  if ((host->flags & HOST_F_XMIT) && (status & STATUS_DATA_OUT))
833  au1xmmc_send_pio(host);
834  else if ((host->flags & HOST_F_RECV) && (status & STATUS_DATA_IN))
835  au1xmmc_receive_pio(host);
836 
837  } else if (status & 0x203F3C70) {
838  DBG("Unhandled status %8.8x\n", host->pdev->id,
839  status);
840  }
841 
842  au_writel(status, HOST_STATUS(host));
843  au_sync();
844 
845  return IRQ_HANDLED;
846 }
847 
848 /* 8bit memory DMA device */
849 static dbdev_tab_t au1xmmc_mem_dbdev = {
851  .dev_flags = DEV_FLAGS_ANYUSE,
852  .dev_tsize = 0,
853  .dev_devwidth = 8,
854  .dev_physaddr = 0x00000000,
855  .dev_intlevel = 0,
856  .dev_intpolarity = 0,
857 };
858 static int memid;
859 
860 static void au1xmmc_dbdma_callback(int irq, void *dev_id)
861 {
862  struct au1xmmc_host *host = (struct au1xmmc_host *)dev_id;
863 
864  /* Avoid spurious interrupts */
865  if (!host->mrq)
866  return;
867 
868  if (host->flags & HOST_F_STOP)
869  SEND_STOP(host);
870 
871  tasklet_schedule(&host->data_task);
872 }
873 
874 static int au1xmmc_dbdma_init(struct au1xmmc_host *host)
875 {
876  struct resource *res;
877  int txid, rxid;
878 
879  res = platform_get_resource(host->pdev, IORESOURCE_DMA, 0);
880  if (!res)
881  return -ENODEV;
882  txid = res->start;
883 
884  res = platform_get_resource(host->pdev, IORESOURCE_DMA, 1);
885  if (!res)
886  return -ENODEV;
887  rxid = res->start;
888 
889  if (!memid)
890  return -ENODEV;
891 
892  host->tx_chan = au1xxx_dbdma_chan_alloc(memid, txid,
893  au1xmmc_dbdma_callback, (void *)host);
894  if (!host->tx_chan) {
895  dev_err(&host->pdev->dev, "cannot allocate TX DMA\n");
896  return -ENODEV;
897  }
898 
899  host->rx_chan = au1xxx_dbdma_chan_alloc(rxid, memid,
900  au1xmmc_dbdma_callback, (void *)host);
901  if (!host->rx_chan) {
902  dev_err(&host->pdev->dev, "cannot allocate RX DMA\n");
904  return -ENODEV;
905  }
906 
909 
912 
913  /* DBDMA is good to go */
914  host->flags |= HOST_F_DMA | HOST_F_DBDMA;
915 
916  return 0;
917 }
918 
919 static void au1xmmc_dbdma_shutdown(struct au1xmmc_host *host)
920 {
921  if (host->flags & HOST_F_DMA) {
922  host->flags &= ~HOST_F_DMA;
925  }
926 }
927 
928 static void au1xmmc_enable_sdio_irq(struct mmc_host *mmc, int en)
929 {
930  struct au1xmmc_host *host = mmc_priv(mmc);
931 
932  if (en)
933  IRQ_ON(host, SD_CONFIG_SI);
934  else
935  IRQ_OFF(host, SD_CONFIG_SI);
936 }
937 
938 static const struct mmc_host_ops au1xmmc_ops = {
939  .request = au1xmmc_request,
940  .set_ios = au1xmmc_set_ios,
941  .get_ro = au1xmmc_card_readonly,
942  .get_cd = au1xmmc_card_inserted,
943  .enable_sdio_irq = au1xmmc_enable_sdio_irq,
944 };
945 
946 static int __devinit au1xmmc_probe(struct platform_device *pdev)
947 {
948  struct mmc_host *mmc;
949  struct au1xmmc_host *host;
950  struct resource *r;
951  int ret, iflag;
952 
953  mmc = mmc_alloc_host(sizeof(struct au1xmmc_host), &pdev->dev);
954  if (!mmc) {
955  dev_err(&pdev->dev, "no memory for mmc_host\n");
956  ret = -ENOMEM;
957  goto out0;
958  }
959 
960  host = mmc_priv(mmc);
961  host->mmc = mmc;
962  host->platdata = pdev->dev.platform_data;
963  host->pdev = pdev;
964 
965  ret = -ENODEV;
967  if (!r) {
968  dev_err(&pdev->dev, "no mmio defined\n");
969  goto out1;
970  }
971 
972  host->ioarea = request_mem_region(r->start, resource_size(r),
973  pdev->name);
974  if (!host->ioarea) {
975  dev_err(&pdev->dev, "mmio already in use\n");
976  goto out1;
977  }
978 
979  host->iobase = (unsigned long)ioremap(r->start, 0x3c);
980  if (!host->iobase) {
981  dev_err(&pdev->dev, "cannot remap mmio\n");
982  goto out2;
983  }
984 
986  if (!r) {
987  dev_err(&pdev->dev, "no IRQ defined\n");
988  goto out3;
989  }
990  host->irq = r->start;
991 
992  mmc->ops = &au1xmmc_ops;
993 
994  mmc->f_min = 450000;
995  mmc->f_max = 24000000;
996 
997  mmc->max_blk_size = 2048;
998  mmc->max_blk_count = 512;
999 
1000  mmc->ocr_avail = AU1XMMC_OCR;
1003 
1004  iflag = IRQF_SHARED; /* Au1100/Au1200: one int for both ctrls */
1005 
1006  switch (alchemy_get_cputype()) {
1007  case ALCHEMY_CPU_AU1100:
1009  break;
1010  case ALCHEMY_CPU_AU1200:
1012  break;
1013  case ALCHEMY_CPU_AU1300:
1014  iflag = 0; /* nothing is shared */
1016  mmc->f_max = 52000000;
1017  if (host->ioarea->start == AU1100_SD0_PHYS_ADDR)
1018  mmc->caps |= MMC_CAP_8_BIT_DATA;
1019  break;
1020  }
1021 
1022  ret = request_irq(host->irq, au1xmmc_irq, iflag, DRIVER_NAME, host);
1023  if (ret) {
1024  dev_err(&pdev->dev, "cannot grab IRQ\n");
1025  goto out3;
1026  }
1027 
1028  host->status = HOST_S_IDLE;
1029 
1030  /* board-specific carddetect setup, if any */
1031  if (host->platdata && host->platdata->cd_setup) {
1032  ret = host->platdata->cd_setup(mmc, 1);
1033  if (ret) {
1034  dev_warn(&pdev->dev, "board CD setup failed\n");
1035  mmc->caps |= MMC_CAP_NEEDS_POLL;
1036  }
1037  } else
1038  mmc->caps |= MMC_CAP_NEEDS_POLL;
1039 
1040  /* platform may not be able to use all advertised caps */
1041  if (host->platdata)
1042  mmc->caps &= ~(host->platdata->mask_host_caps);
1043 
1044  tasklet_init(&host->data_task, au1xmmc_tasklet_data,
1045  (unsigned long)host);
1046 
1047  tasklet_init(&host->finish_task, au1xmmc_tasklet_finish,
1048  (unsigned long)host);
1049 
1050  if (has_dbdma()) {
1051  ret = au1xmmc_dbdma_init(host);
1052  if (ret)
1053  pr_info(DRIVER_NAME ": DBDMA init failed; using PIO\n");
1054  }
1055 
1056 #ifdef CONFIG_LEDS_CLASS
1057  if (host->platdata && host->platdata->led) {
1058  struct led_classdev *led = host->platdata->led;
1059  led->name = mmc_hostname(mmc);
1060  led->brightness = LED_OFF;
1061  led->default_trigger = mmc_hostname(mmc);
1062  ret = led_classdev_register(mmc_dev(mmc), led);
1063  if (ret)
1064  goto out5;
1065  }
1066 #endif
1067 
1068  au1xmmc_reset_controller(host);
1069 
1070  ret = mmc_add_host(mmc);
1071  if (ret) {
1072  dev_err(&pdev->dev, "cannot add mmc host\n");
1073  goto out6;
1074  }
1075 
1076  platform_set_drvdata(pdev, host);
1077 
1078  pr_info(DRIVER_NAME ": MMC Controller %d set up at %8.8X"
1079  " (mode=%s)\n", pdev->id, host->iobase,
1080  host->flags & HOST_F_DMA ? "dma" : "pio");
1081 
1082  return 0; /* all ok */
1083 
1084 out6:
1085 #ifdef CONFIG_LEDS_CLASS
1086  if (host->platdata && host->platdata->led)
1087  led_classdev_unregister(host->platdata->led);
1088 out5:
1089 #endif
1090  au_writel(0, HOST_ENABLE(host));
1091  au_writel(0, HOST_CONFIG(host));
1092  au_writel(0, HOST_CONFIG2(host));
1093  au_sync();
1094 
1095  if (host->flags & HOST_F_DBDMA)
1096  au1xmmc_dbdma_shutdown(host);
1097 
1098  tasklet_kill(&host->data_task);
1099  tasklet_kill(&host->finish_task);
1100 
1101  if (host->platdata && host->platdata->cd_setup &&
1102  !(mmc->caps & MMC_CAP_NEEDS_POLL))
1103  host->platdata->cd_setup(mmc, 0);
1104 
1105  free_irq(host->irq, host);
1106 out3:
1107  iounmap((void *)host->iobase);
1108 out2:
1109  release_resource(host->ioarea);
1110  kfree(host->ioarea);
1111 out1:
1112  mmc_free_host(mmc);
1113 out0:
1114  return ret;
1115 }
1116 
1117 static int __devexit au1xmmc_remove(struct platform_device *pdev)
1118 {
1119  struct au1xmmc_host *host = platform_get_drvdata(pdev);
1120 
1121  if (host) {
1122  mmc_remove_host(host->mmc);
1123 
1124 #ifdef CONFIG_LEDS_CLASS
1125  if (host->platdata && host->platdata->led)
1126  led_classdev_unregister(host->platdata->led);
1127 #endif
1128 
1129  if (host->platdata && host->platdata->cd_setup &&
1130  !(host->mmc->caps & MMC_CAP_NEEDS_POLL))
1131  host->platdata->cd_setup(host->mmc, 0);
1132 
1133  au_writel(0, HOST_ENABLE(host));
1134  au_writel(0, HOST_CONFIG(host));
1135  au_writel(0, HOST_CONFIG2(host));
1136  au_sync();
1137 
1138  tasklet_kill(&host->data_task);
1139  tasklet_kill(&host->finish_task);
1140 
1141  if (host->flags & HOST_F_DBDMA)
1142  au1xmmc_dbdma_shutdown(host);
1143 
1144  au1xmmc_set_power(host, 0);
1145 
1146  free_irq(host->irq, host);
1147  iounmap((void *)host->iobase);
1148  release_resource(host->ioarea);
1149  kfree(host->ioarea);
1150 
1151  mmc_free_host(host->mmc);
1152  platform_set_drvdata(pdev, NULL);
1153  }
1154  return 0;
1155 }
1156 
1157 #ifdef CONFIG_PM
1158 static int au1xmmc_suspend(struct platform_device *pdev, pm_message_t state)
1159 {
1160  struct au1xmmc_host *host = platform_get_drvdata(pdev);
1161  int ret;
1162 
1163  ret = mmc_suspend_host(host->mmc);
1164  if (ret)
1165  return ret;
1166 
1167  au_writel(0, HOST_CONFIG2(host));
1168  au_writel(0, HOST_CONFIG(host));
1169  au_writel(0xffffffff, HOST_STATUS(host));
1170  au_writel(0, HOST_ENABLE(host));
1171  au_sync();
1172 
1173  return 0;
1174 }
1175 
1176 static int au1xmmc_resume(struct platform_device *pdev)
1177 {
1178  struct au1xmmc_host *host = platform_get_drvdata(pdev);
1179 
1180  au1xmmc_reset_controller(host);
1181 
1182  return mmc_resume_host(host->mmc);
1183 }
1184 #else
1185 #define au1xmmc_suspend NULL
1186 #define au1xmmc_resume NULL
1187 #endif
1188 
1189 static struct platform_driver au1xmmc_driver = {
1190  .probe = au1xmmc_probe,
1191  .remove = au1xmmc_remove,
1192  .suspend = au1xmmc_suspend,
1193  .resume = au1xmmc_resume,
1194  .driver = {
1195  .name = DRIVER_NAME,
1196  .owner = THIS_MODULE,
1197  },
1198 };
1199 
1200 static int __init au1xmmc_init(void)
1201 {
1202  if (has_dbdma()) {
1203  /* DSCR_CMD0_ALWAYS has a stride of 32 bits, we need a stride
1204  * of 8 bits. And since devices are shared, we need to create
1205  * our own to avoid freaking out other devices.
1206  */
1207  memid = au1xxx_ddma_add_device(&au1xmmc_mem_dbdev);
1208  if (!memid)
1209  pr_err("au1xmmc: cannot add memory dbdma\n");
1210  }
1211  return platform_driver_register(&au1xmmc_driver);
1212 }
1213 
1214 static void __exit au1xmmc_exit(void)
1215 {
1216  if (has_dbdma() && memid)
1217  au1xxx_ddma_del_device(memid);
1218 
1219  platform_driver_unregister(&au1xmmc_driver);
1220 }
1221 
1222 module_init(au1xmmc_init);
1223 module_exit(au1xmmc_exit);
1224 
1225 MODULE_AUTHOR("Advanced Micro Devices, Inc");
1226 MODULE_DESCRIPTION("MMC/SD driver for the Alchemy Au1XXX");
1227 MODULE_LICENSE("GPL");
1228 MODULE_ALIAS("platform:au1xxx-mmc");