Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
cppi_dma.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2005-2006 by Texas Instruments
3  *
4  * This file implements a DMA interface using TI's CPPI DMA.
5  * For now it's DaVinci-only, but CPPI isn't specific to DaVinci or USB.
6  * The TUSB6020, using VLYNQ, has CPPI that looks much like DaVinci.
7  */
8 
9 #include <linux/module.h>
10 #include <linux/platform_device.h>
11 #include <linux/slab.h>
12 #include <linux/usb.h>
13 
14 #include "musb_core.h"
15 #include "musb_debug.h"
16 #include "cppi_dma.h"
17 
18 
19 /* CPPI DMA status 7-mar-2006:
20  *
21  * - See musb_{host,gadget}.c for more info
22  *
23  * - Correct RX DMA generally forces the engine into irq-per-packet mode,
24  * which can easily saturate the CPU under non-mass-storage loads.
25  *
26  * NOTES 24-aug-2006 (2.6.18-rc4):
27  *
28  * - peripheral RXDMA wedged in a test with packets of length 512/512/1.
29  * evidently after the 1 byte packet was received and acked, the queue
30  * of BDs got garbaged so it wouldn't empty the fifo. (rxcsr 0x2003,
31  * and RX DMA0: 4 left, 80000000 8feff880, 8feff860 8feff860; 8f321401
32  * 004001ff 00000001 .. 8feff860) Host was just getting NAKed on tx
33  * of its next (512 byte) packet. IRQ issues?
34  *
35  * REVISIT: the "transfer DMA" glue between CPPI and USB fifos will
36  * evidently also directly update the RX and TX CSRs ... so audit all
37  * host and peripheral side DMA code to avoid CSR access after DMA has
38  * been started.
39  */
40 
41 /* REVISIT now we can avoid preallocating these descriptors; or
42  * more simply, switch to a global freelist not per-channel ones.
43  * Note: at full speed, 64 descriptors == 4K bulk data.
44  */
45 #define NUM_TXCHAN_BD 64
46 #define NUM_RXCHAN_BD 64
47 
48 static inline void cpu_drain_writebuffer(void)
49 {
50  wmb();
51 #ifdef CONFIG_CPU_ARM926T
52  /* REVISIT this "should not be needed",
53  * but lack of it sure seemed to hurt ...
54  */
55  asm("mcr p15, 0, r0, c7, c10, 4 @ drain write buffer\n");
56 #endif
57 }
58 
59 static inline struct cppi_descriptor *cppi_bd_alloc(struct cppi_channel *c)
60 {
61  struct cppi_descriptor *bd = c->freelist;
62 
63  if (bd)
64  c->freelist = bd->next;
65  return bd;
66 }
67 
68 static inline void
69 cppi_bd_free(struct cppi_channel *c, struct cppi_descriptor *bd)
70 {
71  if (!bd)
72  return;
73  bd->next = c->freelist;
74  c->freelist = bd;
75 }
76 
77 /*
78  * Start DMA controller
79  *
80  * Initialize the DMA controller as necessary.
81  */
82 
83 /* zero out entire rx state RAM entry for the channel */
84 static void cppi_reset_rx(struct cppi_rx_stateram __iomem *rx)
85 {
86  musb_writel(&rx->rx_skipbytes, 0, 0);
87  musb_writel(&rx->rx_head, 0, 0);
88  musb_writel(&rx->rx_sop, 0, 0);
89  musb_writel(&rx->rx_current, 0, 0);
90  musb_writel(&rx->rx_buf_current, 0, 0);
91  musb_writel(&rx->rx_len_len, 0, 0);
92  musb_writel(&rx->rx_cnt_cnt, 0, 0);
93 }
94 
95 /* zero out entire tx state RAM entry for the channel */
96 static void cppi_reset_tx(struct cppi_tx_stateram __iomem *tx, u32 ptr)
97 {
98  musb_writel(&tx->tx_head, 0, 0);
99  musb_writel(&tx->tx_buf, 0, 0);
100  musb_writel(&tx->tx_current, 0, 0);
101  musb_writel(&tx->tx_buf_current, 0, 0);
102  musb_writel(&tx->tx_info, 0, 0);
103  musb_writel(&tx->tx_rem_len, 0, 0);
104  /* musb_writel(&tx->tx_dummy, 0, 0); */
105  musb_writel(&tx->tx_complete, 0, ptr);
106 }
107 
108 static void __init cppi_pool_init(struct cppi *cppi, struct cppi_channel *c)
109 {
110  int j;
111 
112  /* initialize channel fields */
113  c->head = NULL;
114  c->tail = NULL;
115  c->last_processed = NULL;
116  c->channel.status = MUSB_DMA_STATUS_UNKNOWN;
117  c->controller = cppi;
118  c->is_rndis = 0;
119  c->freelist = NULL;
120 
121  /* build the BD Free list for the channel */
122  for (j = 0; j < NUM_TXCHAN_BD + 1; j++) {
123  struct cppi_descriptor *bd;
124  dma_addr_t dma;
125 
126  bd = dma_pool_alloc(cppi->pool, GFP_KERNEL, &dma);
127  bd->dma = dma;
128  cppi_bd_free(c, bd);
129  }
130 }
131 
132 static int cppi_channel_abort(struct dma_channel *);
133 
134 static void cppi_pool_free(struct cppi_channel *c)
135 {
136  struct cppi *cppi = c->controller;
137  struct cppi_descriptor *bd;
138 
139  (void) cppi_channel_abort(&c->channel);
140  c->channel.status = MUSB_DMA_STATUS_UNKNOWN;
141  c->controller = NULL;
142 
143  /* free all its bds */
144  bd = c->last_processed;
145  do {
146  if (bd)
147  dma_pool_free(cppi->pool, bd, bd->dma);
148  bd = cppi_bd_alloc(c);
149  } while (bd);
150  c->last_processed = NULL;
151 }
152 
153 static int __init cppi_controller_start(struct dma_controller *c)
154 {
155  struct cppi *controller;
156  void __iomem *tibase;
157  int i;
158 
159  controller = container_of(c, struct cppi, controller);
160 
161  /* do whatever is necessary to start controller */
162  for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
163  controller->tx[i].transmit = true;
164  controller->tx[i].index = i;
165  }
166  for (i = 0; i < ARRAY_SIZE(controller->rx); i++) {
167  controller->rx[i].transmit = false;
168  controller->rx[i].index = i;
169  }
170 
171  /* setup BD list on a per channel basis */
172  for (i = 0; i < ARRAY_SIZE(controller->tx); i++)
173  cppi_pool_init(controller, controller->tx + i);
174  for (i = 0; i < ARRAY_SIZE(controller->rx); i++)
175  cppi_pool_init(controller, controller->rx + i);
176 
177  tibase = controller->tibase;
178  INIT_LIST_HEAD(&controller->tx_complete);
179 
180  /* initialise tx/rx channel head pointers to zero */
181  for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
182  struct cppi_channel *tx_ch = controller->tx + i;
183  struct cppi_tx_stateram __iomem *tx;
184 
185  INIT_LIST_HEAD(&tx_ch->tx_complete);
186 
187  tx = tibase + DAVINCI_TXCPPI_STATERAM_OFFSET(i);
188  tx_ch->state_ram = tx;
189  cppi_reset_tx(tx, 0);
190  }
191  for (i = 0; i < ARRAY_SIZE(controller->rx); i++) {
192  struct cppi_channel *rx_ch = controller->rx + i;
193  struct cppi_rx_stateram __iomem *rx;
194 
195  INIT_LIST_HEAD(&rx_ch->tx_complete);
196 
197  rx = tibase + DAVINCI_RXCPPI_STATERAM_OFFSET(i);
198  rx_ch->state_ram = rx;
199  cppi_reset_rx(rx);
200  }
201 
202  /* enable individual cppi channels */
203  musb_writel(tibase, DAVINCI_TXCPPI_INTENAB_REG,
205  musb_writel(tibase, DAVINCI_RXCPPI_INTENAB_REG,
207 
208  /* enable tx/rx CPPI control */
209  musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE);
210  musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE);
211 
212  /* disable RNDIS mode, also host rx RNDIS autorequest */
213  musb_writel(tibase, DAVINCI_RNDIS_REG, 0);
214  musb_writel(tibase, DAVINCI_AUTOREQ_REG, 0);
215 
216  return 0;
217 }
218 
219 /*
220  * Stop DMA controller
221  *
222  * De-Init the DMA controller as necessary.
223  */
224 
225 static int cppi_controller_stop(struct dma_controller *c)
226 {
227  struct cppi *controller;
228  void __iomem *tibase;
229  int i;
230  struct musb *musb;
231 
232  controller = container_of(c, struct cppi, controller);
233  musb = controller->musb;
234 
235  tibase = controller->tibase;
236  /* DISABLE INDIVIDUAL CHANNEL Interrupts */
237  musb_writel(tibase, DAVINCI_TXCPPI_INTCLR_REG,
239  musb_writel(tibase, DAVINCI_RXCPPI_INTCLR_REG,
241 
242  dev_dbg(musb->controller, "Tearing down RX and TX Channels\n");
243  for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
244  /* FIXME restructure of txdma to use bds like rxdma */
245  controller->tx[i].last_processed = NULL;
246  cppi_pool_free(controller->tx + i);
247  }
248  for (i = 0; i < ARRAY_SIZE(controller->rx); i++)
249  cppi_pool_free(controller->rx + i);
250 
251  /* in Tx Case proper teardown is supported. We resort to disabling
252  * Tx/Rx CPPI after cleanup of Tx channels. Before TX teardown is
253  * complete TX CPPI cannot be disabled.
254  */
255  /*disable tx/rx cppi */
258 
259  return 0;
260 }
261 
262 /* While dma channel is allocated, we only want the core irqs active
263  * for fault reports, otherwise we'd get irqs that we don't care about.
264  * Except for TX irqs, where dma done != fifo empty and reusable ...
265  *
266  * NOTE: docs don't say either way, but irq masking **enables** irqs.
267  *
268  * REVISIT same issue applies to pure PIO usage too, and non-cppi dma...
269  */
270 static inline void core_rxirq_disable(void __iomem *tibase, unsigned epnum)
271 {
272  musb_writel(tibase, DAVINCI_USB_INT_MASK_CLR_REG, 1 << (epnum + 8));
273 }
274 
275 static inline void core_rxirq_enable(void __iomem *tibase, unsigned epnum)
276 {
277  musb_writel(tibase, DAVINCI_USB_INT_MASK_SET_REG, 1 << (epnum + 8));
278 }
279 
280 
281 /*
282  * Allocate a CPPI Channel for DMA. With CPPI, channels are bound to
283  * each transfer direction of a non-control endpoint, so allocating
284  * (and deallocating) is mostly a way to notice bad housekeeping on
285  * the software side. We assume the irqs are always active.
286  */
287 static struct dma_channel *
288 cppi_channel_allocate(struct dma_controller *c,
289  struct musb_hw_ep *ep, u8 transmit)
290 {
291  struct cppi *controller;
292  u8 index;
293  struct cppi_channel *cppi_ch;
294  void __iomem *tibase;
295  struct musb *musb;
296 
297  controller = container_of(c, struct cppi, controller);
298  tibase = controller->tibase;
299  musb = controller->musb;
300 
301  /* ep0 doesn't use DMA; remember cppi indices are 0..N-1 */
302  index = ep->epnum - 1;
303 
304  /* return the corresponding CPPI Channel Handle, and
305  * probably disable the non-CPPI irq until we need it.
306  */
307  if (transmit) {
308  if (index >= ARRAY_SIZE(controller->tx)) {
309  dev_dbg(musb->controller, "no %cX%d CPPI channel\n", 'T', index);
310  return NULL;
311  }
312  cppi_ch = controller->tx + index;
313  } else {
314  if (index >= ARRAY_SIZE(controller->rx)) {
315  dev_dbg(musb->controller, "no %cX%d CPPI channel\n", 'R', index);
316  return NULL;
317  }
318  cppi_ch = controller->rx + index;
319  core_rxirq_disable(tibase, ep->epnum);
320  }
321 
322  /* REVISIT make this an error later once the same driver code works
323  * with the other DMA engine too
324  */
325  if (cppi_ch->hw_ep)
326  dev_dbg(musb->controller, "re-allocating DMA%d %cX channel %p\n",
327  index, transmit ? 'T' : 'R', cppi_ch);
328  cppi_ch->hw_ep = ep;
329  cppi_ch->channel.status = MUSB_DMA_STATUS_FREE;
330  cppi_ch->channel.max_len = 0x7fffffff;
331 
332  dev_dbg(musb->controller, "Allocate CPPI%d %cX\n", index, transmit ? 'T' : 'R');
333  return &cppi_ch->channel;
334 }
335 
336 /* Release a CPPI Channel. */
337 static void cppi_channel_release(struct dma_channel *channel)
338 {
339  struct cppi_channel *c;
340  void __iomem *tibase;
341 
342  /* REVISIT: for paranoia, check state and abort if needed... */
343 
344  c = container_of(channel, struct cppi_channel, channel);
345  tibase = c->controller->tibase;
346  if (!c->hw_ep)
347  dev_dbg(c->controller->musb->controller,
348  "releasing idle DMA channel %p\n", c);
349  else if (!c->transmit)
350  core_rxirq_enable(tibase, c->index + 1);
351 
352  /* for now, leave its cppi IRQ enabled (we won't trigger it) */
353  c->hw_ep = NULL;
354  channel->status = MUSB_DMA_STATUS_UNKNOWN;
355 }
356 
357 /* Context: controller irqlocked */
358 static void
359 cppi_dump_rx(int level, struct cppi_channel *c, const char *tag)
360 {
361  void __iomem *base = c->controller->mregs;
362  struct cppi_rx_stateram __iomem *rx = c->state_ram;
363 
364  musb_ep_select(base, c->index + 1);
365 
366  dev_dbg(c->controller->musb->controller,
367  "RX DMA%d%s: %d left, csr %04x, "
368  "%08x H%08x S%08x C%08x, "
369  "B%08x L%08x %08x .. %08x"
370  "\n",
371  c->index, tag,
372  musb_readl(c->controller->tibase,
374  musb_readw(c->hw_ep->regs, MUSB_RXCSR),
375 
376  musb_readl(&rx->rx_skipbytes, 0),
377  musb_readl(&rx->rx_head, 0),
378  musb_readl(&rx->rx_sop, 0),
379  musb_readl(&rx->rx_current, 0),
380 
381  musb_readl(&rx->rx_buf_current, 0),
382  musb_readl(&rx->rx_len_len, 0),
383  musb_readl(&rx->rx_cnt_cnt, 0),
384  musb_readl(&rx->rx_complete, 0)
385  );
386 }
387 
388 /* Context: controller irqlocked */
389 static void
390 cppi_dump_tx(int level, struct cppi_channel *c, const char *tag)
391 {
392  void __iomem *base = c->controller->mregs;
393  struct cppi_tx_stateram __iomem *tx = c->state_ram;
394 
395  musb_ep_select(base, c->index + 1);
396 
397  dev_dbg(c->controller->musb->controller,
398  "TX DMA%d%s: csr %04x, "
399  "H%08x S%08x C%08x %08x, "
400  "F%08x L%08x .. %08x"
401  "\n",
402  c->index, tag,
403  musb_readw(c->hw_ep->regs, MUSB_TXCSR),
404 
405  musb_readl(&tx->tx_head, 0),
406  musb_readl(&tx->tx_buf, 0),
407  musb_readl(&tx->tx_current, 0),
408  musb_readl(&tx->tx_buf_current, 0),
409 
410  musb_readl(&tx->tx_info, 0),
411  musb_readl(&tx->tx_rem_len, 0),
412  /* dummy/unused word 6 */
413  musb_readl(&tx->tx_complete, 0)
414  );
415 }
416 
417 /* Context: controller irqlocked */
418 static inline void
419 cppi_rndis_update(struct cppi_channel *c, int is_rx,
420  void __iomem *tibase, int is_rndis)
421 {
422  /* we may need to change the rndis flag for this cppi channel */
423  if (c->is_rndis != is_rndis) {
424  u32 value = musb_readl(tibase, DAVINCI_RNDIS_REG);
425  u32 temp = 1 << (c->index);
426 
427  if (is_rx)
428  temp <<= 16;
429  if (is_rndis)
430  value |= temp;
431  else
432  value &= ~temp;
433  musb_writel(tibase, DAVINCI_RNDIS_REG, value);
434  c->is_rndis = is_rndis;
435  }
436 }
437 
438 #ifdef CONFIG_USB_MUSB_DEBUG
439 static void cppi_dump_rxbd(const char *tag, struct cppi_descriptor *bd)
440 {
441  pr_debug("RXBD/%s %08x: "
442  "nxt %08x buf %08x off.blen %08x opt.plen %08x\n",
443  tag, bd->dma,
444  bd->hw_next, bd->hw_bufp, bd->hw_off_len,
445  bd->hw_options);
446 }
447 #endif
448 
449 static void cppi_dump_rxq(int level, const char *tag, struct cppi_channel *rx)
450 {
451 #ifdef CONFIG_USB_MUSB_DEBUG
452  struct cppi_descriptor *bd;
453 
454  if (!_dbg_level(level))
455  return;
456  cppi_dump_rx(level, rx, tag);
457  if (rx->last_processed)
458  cppi_dump_rxbd("last", rx->last_processed);
459  for (bd = rx->head; bd; bd = bd->next)
460  cppi_dump_rxbd("active", bd);
461 #endif
462 }
463 
464 
465 /* NOTE: DaVinci autoreq is ignored except for host side "RNDIS" mode RX;
466  * so we won't ever use it (see "CPPI RX Woes" below).
467  */
468 static inline int cppi_autoreq_update(struct cppi_channel *rx,
469  void __iomem *tibase, int onepacket, unsigned n_bds)
470 {
471  u32 val;
472 
473 #ifdef RNDIS_RX_IS_USABLE
474  u32 tmp;
475  /* assert(is_host_active(musb)) */
476 
477  /* start from "AutoReq never" */
478  tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
479  val = tmp & ~((0x3) << (rx->index * 2));
480 
481  /* HCD arranged reqpkt for packet #1. we arrange int
482  * for all but the last one, maybe in two segments.
483  */
484  if (!onepacket) {
485 #if 0
486  /* use two segments, autoreq "all" then the last "never" */
487  val |= ((0x3) << (rx->index * 2));
488  n_bds--;
489 #else
490  /* one segment, autoreq "all-but-last" */
491  val |= ((0x1) << (rx->index * 2));
492 #endif
493  }
494 
495  if (val != tmp) {
496  int n = 100;
497 
498  /* make sure that autoreq is updated before continuing */
499  musb_writel(tibase, DAVINCI_AUTOREQ_REG, val);
500  do {
501  tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
502  if (tmp == val)
503  break;
504  cpu_relax();
505  } while (n-- > 0);
506  }
507 #endif
508 
509  /* REQPKT is turned off after each segment */
510  if (n_bds && rx->channel.actual_len) {
511  void __iomem *regs = rx->hw_ep->regs;
512 
513  val = musb_readw(regs, MUSB_RXCSR);
514  if (!(val & MUSB_RXCSR_H_REQPKT)) {
515  val |= MUSB_RXCSR_H_REQPKT | MUSB_RXCSR_H_WZC_BITS;
516  musb_writew(regs, MUSB_RXCSR, val);
517  /* flush writebuffer */
518  val = musb_readw(regs, MUSB_RXCSR);
519  }
520  }
521  return n_bds;
522 }
523 
524 
525 /* Buffer enqueuing Logic:
526  *
527  * - RX builds new queues each time, to help handle routine "early
528  * termination" cases (faults, including errors and short reads)
529  * more correctly.
530  *
531  * - for now, TX reuses the same queue of BDs every time
532  *
533  * REVISIT long term, we want a normal dynamic model.
534  * ... the goal will be to append to the
535  * existing queue, processing completed "dma buffers" (segments) on the fly.
536  *
537  * Otherwise we force an IRQ latency between requests, which slows us a lot
538  * (especially in "transparent" dma). Unfortunately that model seems to be
539  * inherent in the DMA model from the Mentor code, except in the rare case
540  * of transfers big enough (~128+ KB) that we could append "middle" segments
541  * in the TX paths. (RX can't do this, see below.)
542  *
543  * That's true even in the CPPI- friendly iso case, where most urbs have
544  * several small segments provided in a group and where the "packet at a time"
545  * "transparent" DMA model is always correct, even on the RX side.
546  */
547 
548 /*
549  * CPPI TX:
550  * ========
551  * TX is a lot more reasonable than RX; it doesn't need to run in
552  * irq-per-packet mode very often. RNDIS mode seems to behave too
553  * (except how it handles the exactly-N-packets case). Building a
554  * txdma queue with multiple requests (urb or usb_request) looks
555  * like it would work ... but fault handling would need much testing.
556  *
557  * The main issue with TX mode RNDIS relates to transfer lengths that
558  * are an exact multiple of the packet length. It appears that there's
559  * a hiccup in that case (maybe the DMA completes before the ZLP gets
560  * written?) boiling down to not being able to rely on CPPI writing any
561  * terminating zero length packet before the next transfer is written.
562  * So that's punted to PIO; better yet, gadget drivers can avoid it.
563  *
564  * Plus, there's allegedly an undocumented constraint that rndis transfer
565  * length be a multiple of 64 bytes ... but the chip doesn't act that
566  * way, and we really don't _want_ that behavior anyway.
567  *
568  * On TX, "transparent" mode works ... although experiments have shown
569  * problems trying to use the SOP/EOP bits in different USB packets.
570  *
571  * REVISIT try to handle terminating zero length packets using CPPI
572  * instead of doing it by PIO after an IRQ. (Meanwhile, make Ethernet
573  * links avoid that issue by forcing them to avoid zlps.)
574  */
575 static void
576 cppi_next_tx_segment(struct musb *musb, struct cppi_channel *tx)
577 {
578  unsigned maxpacket = tx->maxpacket;
579  dma_addr_t addr = tx->buf_dma + tx->offset;
580  size_t length = tx->buf_len - tx->offset;
581  struct cppi_descriptor *bd;
582  unsigned n_bds;
583  unsigned i;
584  struct cppi_tx_stateram __iomem *tx_ram = tx->state_ram;
585  int rndis;
586 
587  /* TX can use the CPPI "rndis" mode, where we can probably fit this
588  * transfer in one BD and one IRQ. The only time we would NOT want
589  * to use it is when hardware constraints prevent it, or if we'd
590  * trigger the "send a ZLP?" confusion.
591  */
592  rndis = (maxpacket & 0x3f) == 0
593  && length > maxpacket
594  && length < 0xffff
595  && (length % maxpacket) != 0;
596 
597  if (rndis) {
598  maxpacket = length;
599  n_bds = 1;
600  } else {
601  n_bds = length / maxpacket;
602  if (!length || (length % maxpacket))
603  n_bds++;
604  n_bds = min(n_bds, (unsigned) NUM_TXCHAN_BD);
605  length = min(n_bds * maxpacket, length);
606  }
607 
608  dev_dbg(musb->controller, "TX DMA%d, pktSz %d %s bds %d dma 0x%llx len %u\n",
609  tx->index,
610  maxpacket,
611  rndis ? "rndis" : "transparent",
612  n_bds,
613  (unsigned long long)addr, length);
614 
615  cppi_rndis_update(tx, 0, musb->ctrl_base, rndis);
616 
617  /* assuming here that channel_program is called during
618  * transfer initiation ... current code maintains state
619  * for one outstanding request only (no queues, not even
620  * the implicit ones of an iso urb).
621  */
622 
623  bd = tx->freelist;
624  tx->head = bd;
625  tx->last_processed = NULL;
626 
627  /* FIXME use BD pool like RX side does, and just queue
628  * the minimum number for this request.
629  */
630 
631  /* Prepare queue of BDs first, then hand it to hardware.
632  * All BDs except maybe the last should be of full packet
633  * size; for RNDIS there _is_ only that last packet.
634  */
635  for (i = 0; i < n_bds; ) {
636  if (++i < n_bds && bd->next)
637  bd->hw_next = bd->next->dma;
638  else
639  bd->hw_next = 0;
640 
641  bd->hw_bufp = tx->buf_dma + tx->offset;
642 
643  /* FIXME set EOP only on the last packet,
644  * SOP only on the first ... avoid IRQs
645  */
646  if ((tx->offset + maxpacket) <= tx->buf_len) {
647  tx->offset += maxpacket;
648  bd->hw_off_len = maxpacket;
650  | CPPI_OWN_SET | maxpacket;
651  } else {
652  /* only this one may be a partial USB Packet */
654 
655  partial_len = tx->buf_len - tx->offset;
656  tx->offset = tx->buf_len;
657  bd->hw_off_len = partial_len;
658 
661  if (partial_len == 0)
662  bd->hw_options |= CPPI_ZERO_SET;
663  }
664 
665  dev_dbg(musb->controller, "TXBD %p: nxt %08x buf %08x len %04x opt %08x\n",
666  bd, bd->hw_next, bd->hw_bufp,
667  bd->hw_off_len, bd->hw_options);
668 
669  /* update the last BD enqueued to the list */
670  tx->tail = bd;
671  bd = bd->next;
672  }
673 
674  /* BDs live in DMA-coherent memory, but writes might be pending */
675  cpu_drain_writebuffer();
676 
677  /* Write to the HeadPtr in state RAM to trigger */
678  musb_writel(&tx_ram->tx_head, 0, (u32)tx->freelist->dma);
679 
680  cppi_dump_tx(5, tx, "/S");
681 }
682 
683 /*
684  * CPPI RX Woes:
685  * =============
686  * Consider a 1KB bulk RX buffer in two scenarios: (a) it's fed two 300 byte
687  * packets back-to-back, and (b) it's fed two 512 byte packets back-to-back.
688  * (Full speed transfers have similar scenarios.)
689  *
690  * The correct behavior for Linux is that (a) fills the buffer with 300 bytes,
691  * and the next packet goes into a buffer that's queued later; while (b) fills
692  * the buffer with 1024 bytes. How to do that with CPPI?
693  *
694  * - RX queues in "rndis" mode -- one single BD -- handle (a) correctly, but
695  * (b) loses **BADLY** because nothing (!) happens when that second packet
696  * fills the buffer, much less when a third one arrives. (Which makes this
697  * not a "true" RNDIS mode. In the RNDIS protocol short-packet termination
698  * is optional, and it's fine if peripherals -- not hosts! -- pad messages
699  * out to end-of-buffer. Standard PCI host controller DMA descriptors
700  * implement that mode by default ... which is no accident.)
701  *
702  * - RX queues in "transparent" mode -- two BDs with 512 bytes each -- have
703  * converse problems: (b) is handled right, but (a) loses badly. CPPI RX
704  * ignores SOP/EOP markings and processes both of those BDs; so both packets
705  * are loaded into the buffer (with a 212 byte gap between them), and the next
706  * buffer queued will NOT get its 300 bytes of data. (It seems like SOP/EOP
707  * are intended as outputs for RX queues, not inputs...)
708  *
709  * - A variant of "transparent" mode -- one BD at a time -- is the only way to
710  * reliably make both cases work, with software handling both cases correctly
711  * and at the significant penalty of needing an IRQ per packet. (The lack of
712  * I/O overlap can be slightly ameliorated by enabling double buffering.)
713  *
714  * So how to get rid of IRQ-per-packet? The transparent multi-BD case could
715  * be used in special cases like mass storage, which sets URB_SHORT_NOT_OK
716  * (or maybe its peripheral side counterpart) to flag (a) scenarios as errors
717  * with guaranteed driver level fault recovery and scrubbing out what's left
718  * of that garbaged datastream.
719  *
720  * But there seems to be no way to identify the cases where CPPI RNDIS mode
721  * is appropriate -- which do NOT include RNDIS host drivers, but do include
722  * the CDC Ethernet driver! -- and the documentation is incomplete/wrong.
723  * So we can't _ever_ use RX RNDIS mode ... except by using a heuristic
724  * that applies best on the peripheral side (and which could fail rudely).
725  *
726  * Leaving only "transparent" mode; we avoid multi-bd modes in almost all
727  * cases other than mass storage class. Otherwise we're correct but slow,
728  * since CPPI penalizes our need for a "true RNDIS" default mode.
729  */
730 
731 
732 /* Heuristic, intended to kick in for ethernet/rndis peripheral ONLY
733  *
734  * IFF
735  * (a) peripheral mode ... since rndis peripherals could pad their
736  * writes to hosts, causing i/o failure; or we'd have to cope with
737  * a largely unknowable variety of host side protocol variants
738  * (b) and short reads are NOT errors ... since full reads would
739  * cause those same i/o failures
740  * (c) and read length is
741  * - less than 64KB (max per cppi descriptor)
742  * - not a multiple of 4096 (g_zero default, full reads typical)
743  * - N (>1) packets long, ditto (full reads not EXPECTED)
744  * THEN
745  * try rx rndis mode
746  *
747  * Cost of heuristic failing: RXDMA wedges at the end of transfers that
748  * fill out the whole buffer. Buggy host side usb network drivers could
749  * trigger that, but "in the field" such bugs seem to be all but unknown.
750  *
751  * So this module parameter lets the heuristic be disabled. When using
752  * gadgetfs, the heuristic will probably need to be disabled.
753  */
754 static bool cppi_rx_rndis = 1;
755 
756 module_param(cppi_rx_rndis, bool, 0);
757 MODULE_PARM_DESC(cppi_rx_rndis, "enable/disable RX RNDIS heuristic");
758 
759 
775 static void
776 cppi_next_rx_segment(struct musb *musb, struct cppi_channel *rx, int onepacket)
777 {
778  unsigned maxpacket = rx->maxpacket;
779  dma_addr_t addr = rx->buf_dma + rx->offset;
780  size_t length = rx->buf_len - rx->offset;
781  struct cppi_descriptor *bd, *tail;
782  unsigned n_bds;
783  unsigned i;
784  void __iomem *tibase = musb->ctrl_base;
785  int is_rndis = 0;
786  struct cppi_rx_stateram __iomem *rx_ram = rx->state_ram;
787 
788  if (onepacket) {
789  /* almost every USB driver, host or peripheral side */
790  n_bds = 1;
791 
792  /* maybe apply the heuristic above */
793  if (cppi_rx_rndis
794  && is_peripheral_active(musb)
795  && length > maxpacket
796  && (length & ~0xffff) == 0
797  && (length & 0x0fff) != 0
798  && (length & (maxpacket - 1)) == 0) {
799  maxpacket = length;
800  is_rndis = 1;
801  }
802  } else {
803  /* virtually nothing except mass storage class */
804  if (length > 0xffff) {
805  n_bds = 0xffff / maxpacket;
806  length = n_bds * maxpacket;
807  } else {
808  n_bds = length / maxpacket;
809  if (length % maxpacket)
810  n_bds++;
811  }
812  if (n_bds == 1)
813  onepacket = 1;
814  else
815  n_bds = min(n_bds, (unsigned) NUM_RXCHAN_BD);
816  }
817 
818  /* In host mode, autorequest logic can generate some IN tokens; it's
819  * tricky since we can't leave REQPKT set in RXCSR after the transfer
820  * finishes. So: multipacket transfers involve two or more segments.
821  * And always at least two IRQs ... RNDIS mode is not an option.
822  */
823  if (is_host_active(musb))
824  n_bds = cppi_autoreq_update(rx, tibase, onepacket, n_bds);
825 
826  cppi_rndis_update(rx, 1, musb->ctrl_base, is_rndis);
827 
828  length = min(n_bds * maxpacket, length);
829 
830  dev_dbg(musb->controller, "RX DMA%d seg, maxp %d %s bds %d (cnt %d) "
831  "dma 0x%llx len %u %u/%u\n",
832  rx->index, maxpacket,
833  onepacket
834  ? (is_rndis ? "rndis" : "onepacket")
835  : "multipacket",
836  n_bds,
837  musb_readl(tibase,
838  DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
839  & 0xffff,
840  (unsigned long long)addr, length,
841  rx->channel.actual_len, rx->buf_len);
842 
843  /* only queue one segment at a time, since the hardware prevents
844  * correct queue shutdown after unexpected short packets
845  */
846  bd = cppi_bd_alloc(rx);
847  rx->head = bd;
848 
849  /* Build BDs for all packets in this segment */
850  for (i = 0, tail = NULL; bd && i < n_bds; i++, tail = bd) {
851  u32 bd_len;
852 
853  if (i) {
854  bd = cppi_bd_alloc(rx);
855  if (!bd)
856  break;
857  tail->next = bd;
858  tail->hw_next = bd->dma;
859  }
860  bd->hw_next = 0;
861 
862  /* all but the last packet will be maxpacket size */
863  if (maxpacket < length)
864  bd_len = maxpacket;
865  else
866  bd_len = length;
867 
868  bd->hw_bufp = addr;
869  addr += bd_len;
870  rx->offset += bd_len;
871 
872  bd->hw_off_len = (0 /*offset*/ << 16) + bd_len;
873  bd->buflen = bd_len;
874 
875  bd->hw_options = CPPI_OWN_SET | (i == 0 ? length : 0);
876  length -= bd_len;
877  }
878 
879  /* we always expect at least one reusable BD! */
880  if (!tail) {
881  WARNING("rx dma%d -- no BDs? need %d\n", rx->index, n_bds);
882  return;
883  } else if (i < n_bds)
884  WARNING("rx dma%d -- only %d of %d BDs\n", rx->index, i, n_bds);
885 
886  tail->next = NULL;
887  tail->hw_next = 0;
888 
889  bd = rx->head;
890  rx->tail = tail;
891 
892  /* short reads and other faults should terminate this entire
893  * dma segment. we want one "dma packet" per dma segment, not
894  * one per USB packet, terminating the whole queue at once...
895  * NOTE that current hardware seems to ignore SOP and EOP.
896  */
897  bd->hw_options |= CPPI_SOP_SET;
898  tail->hw_options |= CPPI_EOP_SET;
899 
900 #ifdef CONFIG_USB_MUSB_DEBUG
901  if (_dbg_level(5)) {
902  struct cppi_descriptor *d;
903 
904  for (d = rx->head; d; d = d->next)
905  cppi_dump_rxbd("S", d);
906  }
907 #endif
908 
909  /* in case the preceding transfer left some state... */
910  tail = rx->last_processed;
911  if (tail) {
912  tail->next = bd;
913  tail->hw_next = bd->dma;
914  }
915 
916  core_rxirq_enable(tibase, rx->index + 1);
917 
918  /* BDs live in DMA-coherent memory, but writes might be pending */
919  cpu_drain_writebuffer();
920 
921  /* REVISIT specs say to write this AFTER the BUFCNT register
922  * below ... but that loses badly.
923  */
924  musb_writel(&rx_ram->rx_head, 0, bd->dma);
925 
926  /* bufferCount must be at least 3, and zeroes on completion
927  * unless it underflows below zero, or stops at two, or keeps
928  * growing ... grr.
929  */
930  i = musb_readl(tibase,
931  DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
932  & 0xffff;
933 
934  if (!i)
935  musb_writel(tibase,
936  DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
937  n_bds + 2);
938  else if (n_bds > (i - 3))
939  musb_writel(tibase,
940  DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
941  n_bds - (i - 3));
942 
943  i = musb_readl(tibase,
944  DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
945  & 0xffff;
946  if (i < (2 + n_bds)) {
947  dev_dbg(musb->controller, "bufcnt%d underrun - %d (for %d)\n",
948  rx->index, i, n_bds);
949  musb_writel(tibase,
950  DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
951  n_bds + 2);
952  }
953 
954  cppi_dump_rx(4, rx, "/S");
955 }
956 
968 static int cppi_channel_program(struct dma_channel *ch,
969  u16 maxpacket, u8 mode,
970  dma_addr_t dma_addr, u32 len)
971 {
972  struct cppi_channel *cppi_ch;
973  struct cppi *controller;
974  struct musb *musb;
975 
976  cppi_ch = container_of(ch, struct cppi_channel, channel);
977  controller = cppi_ch->controller;
978  musb = controller->musb;
979 
980  switch (ch->status) {
983  /* fault irq handler should have handled cleanup */
984  WARNING("%cX DMA%d not cleaned up after abort!\n",
985  cppi_ch->transmit ? 'T' : 'R',
986  cppi_ch->index);
987  /* WARN_ON(1); */
988  break;
990  WARNING("program active channel? %cX DMA%d\n",
991  cppi_ch->transmit ? 'T' : 'R',
992  cppi_ch->index);
993  /* WARN_ON(1); */
994  break;
996  dev_dbg(musb->controller, "%cX DMA%d not allocated!\n",
997  cppi_ch->transmit ? 'T' : 'R',
998  cppi_ch->index);
999  /* FALLTHROUGH */
1000  case MUSB_DMA_STATUS_FREE:
1001  break;
1002  }
1003 
1005 
1006  /* set transfer parameters, then queue up its first segment */
1007  cppi_ch->buf_dma = dma_addr;
1008  cppi_ch->offset = 0;
1009  cppi_ch->maxpacket = maxpacket;
1010  cppi_ch->buf_len = len;
1011  cppi_ch->channel.actual_len = 0;
1012 
1013  /* TX channel? or RX? */
1014  if (cppi_ch->transmit)
1015  cppi_next_tx_segment(musb, cppi_ch);
1016  else
1017  cppi_next_rx_segment(musb, cppi_ch, mode);
1018 
1019  return true;
1020 }
1021 
1022 static bool cppi_rx_scan(struct cppi *cppi, unsigned ch)
1023 {
1024  struct cppi_channel *rx = &cppi->rx[ch];
1025  struct cppi_rx_stateram __iomem *state = rx->state_ram;
1026  struct cppi_descriptor *bd;
1027  struct cppi_descriptor *last = rx->last_processed;
1028  bool completed = false;
1029  bool acked = false;
1030  int i;
1031  dma_addr_t safe2ack;
1032  void __iomem *regs = rx->hw_ep->regs;
1033  struct musb *musb = cppi->musb;
1034 
1035  cppi_dump_rx(6, rx, "/K");
1036 
1037  bd = last ? last->next : rx->head;
1038  if (!bd)
1039  return false;
1040 
1041  /* run through all completed BDs */
1042  for (i = 0, safe2ack = musb_readl(&state->rx_complete, 0);
1043  (safe2ack || completed) && bd && i < NUM_RXCHAN_BD;
1044  i++, bd = bd->next) {
1045  u16 len;
1046 
1047  /* catch latest BD writes from CPPI */
1048  rmb();
1049  if (!completed && (bd->hw_options & CPPI_OWN_SET))
1050  break;
1051 
1052  dev_dbg(musb->controller, "C/RXBD %llx: nxt %08x buf %08x "
1053  "off.len %08x opt.len %08x (%d)\n",
1054  (unsigned long long)bd->dma, bd->hw_next, bd->hw_bufp,
1055  bd->hw_off_len, bd->hw_options,
1056  rx->channel.actual_len);
1057 
1058  /* actual packet received length */
1059  if ((bd->hw_options & CPPI_SOP_SET) && !completed)
1060  len = bd->hw_off_len & CPPI_RECV_PKTLEN_MASK;
1061  else
1062  len = 0;
1063 
1064  if (bd->hw_options & CPPI_EOQ_MASK)
1065  completed = true;
1066 
1067  if (!completed && len < bd->buflen) {
1068  /* NOTE: when we get a short packet, RXCSR_H_REQPKT
1069  * must have been cleared, and no more DMA packets may
1070  * active be in the queue... TI docs didn't say, but
1071  * CPPI ignores those BDs even though OWN is still set.
1072  */
1073  completed = true;
1074  dev_dbg(musb->controller, "rx short %d/%d (%d)\n",
1075  len, bd->buflen,
1076  rx->channel.actual_len);
1077  }
1078 
1079  /* If we got here, we expect to ack at least one BD; meanwhile
1080  * CPPI may completing other BDs while we scan this list...
1081  *
1082  * RACE: we can notice OWN cleared before CPPI raises the
1083  * matching irq by writing that BD as the completion pointer.
1084  * In such cases, stop scanning and wait for the irq, avoiding
1085  * lost acks and states where BD ownership is unclear.
1086  */
1087  if (bd->dma == safe2ack) {
1088  musb_writel(&state->rx_complete, 0, safe2ack);
1089  safe2ack = musb_readl(&state->rx_complete, 0);
1090  acked = true;
1091  if (bd->dma == safe2ack)
1092  safe2ack = 0;
1093  }
1094 
1095  rx->channel.actual_len += len;
1096 
1097  cppi_bd_free(rx, last);
1098  last = bd;
1099 
1100  /* stop scanning on end-of-segment */
1101  if (bd->hw_next == 0)
1102  completed = true;
1103  }
1104  rx->last_processed = last;
1105 
1106  /* dma abort, lost ack, or ... */
1107  if (!acked && last) {
1108  int csr;
1109 
1110  if (safe2ack == 0 || safe2ack == rx->last_processed->dma)
1111  musb_writel(&state->rx_complete, 0, safe2ack);
1112  if (safe2ack == 0) {
1113  cppi_bd_free(rx, last);
1114  rx->last_processed = NULL;
1115 
1116  /* if we land here on the host side, H_REQPKT will
1117  * be clear and we need to restart the queue...
1118  */
1119  WARN_ON(rx->head);
1120  }
1121  musb_ep_select(cppi->mregs, rx->index + 1);
1122  csr = musb_readw(regs, MUSB_RXCSR);
1123  if (csr & MUSB_RXCSR_DMAENAB) {
1124  dev_dbg(musb->controller, "list%d %p/%p, last %llx%s, csr %04x\n",
1125  rx->index,
1126  rx->head, rx->tail,
1127  rx->last_processed
1128  ? (unsigned long long)
1129  rx->last_processed->dma
1130  : 0,
1131  completed ? ", completed" : "",
1132  csr);
1133  cppi_dump_rxq(4, "/what?", rx);
1134  }
1135  }
1136  if (!completed) {
1137  int csr;
1138 
1139  rx->head = bd;
1140 
1141  /* REVISIT seems like "autoreq all but EOP" doesn't...
1142  * setting it here "should" be racey, but seems to work
1143  */
1144  csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR);
1145  if (is_host_active(cppi->musb)
1146  && bd
1147  && !(csr & MUSB_RXCSR_H_REQPKT)) {
1148  csr |= MUSB_RXCSR_H_REQPKT;
1149  musb_writew(regs, MUSB_RXCSR,
1150  MUSB_RXCSR_H_WZC_BITS | csr);
1151  csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR);
1152  }
1153  } else {
1154  rx->head = NULL;
1155  rx->tail = NULL;
1156  }
1157 
1158  cppi_dump_rx(6, rx, completed ? "/completed" : "/cleaned");
1159  return completed;
1160 }
1161 
1163 {
1164  struct musb *musb = dev_id;
1165  struct cppi *cppi;
1166  void __iomem *tibase;
1167  struct musb_hw_ep *hw_ep = NULL;
1168  u32 rx, tx;
1169  int i, index;
1170  unsigned long uninitialized_var(flags);
1171 
1172  cppi = container_of(musb->dma_controller, struct cppi, controller);
1173  if (cppi->irq)
1174  spin_lock_irqsave(&musb->lock, flags);
1175 
1176  tibase = musb->ctrl_base;
1177 
1178  tx = musb_readl(tibase, DAVINCI_TXCPPI_MASKED_REG);
1179  rx = musb_readl(tibase, DAVINCI_RXCPPI_MASKED_REG);
1180 
1181  if (!tx && !rx) {
1182  if (cppi->irq)
1183  spin_unlock_irqrestore(&musb->lock, flags);
1184  return IRQ_NONE;
1185  }
1186 
1187  dev_dbg(musb->controller, "CPPI IRQ Tx%x Rx%x\n", tx, rx);
1188 
1189  /* process TX channels */
1190  for (index = 0; tx; tx = tx >> 1, index++) {
1191  struct cppi_channel *tx_ch;
1192  struct cppi_tx_stateram __iomem *tx_ram;
1193  bool completed = false;
1194  struct cppi_descriptor *bd;
1195 
1196  if (!(tx & 1))
1197  continue;
1198 
1199  tx_ch = cppi->tx + index;
1200  tx_ram = tx_ch->state_ram;
1201 
1202  /* FIXME need a cppi_tx_scan() routine, which
1203  * can also be called from abort code
1204  */
1205 
1206  cppi_dump_tx(5, tx_ch, "/E");
1207 
1208  bd = tx_ch->head;
1209 
1210  /*
1211  * If Head is null then this could mean that a abort interrupt
1212  * that needs to be acknowledged.
1213  */
1214  if (NULL == bd) {
1215  dev_dbg(musb->controller, "null BD\n");
1216  musb_writel(&tx_ram->tx_complete, 0, 0);
1217  continue;
1218  }
1219 
1220  /* run through all completed BDs */
1221  for (i = 0; !completed && bd && i < NUM_TXCHAN_BD;
1222  i++, bd = bd->next) {
1223  u16 len;
1224 
1225  /* catch latest BD writes from CPPI */
1226  rmb();
1227  if (bd->hw_options & CPPI_OWN_SET)
1228  break;
1229 
1230  dev_dbg(musb->controller, "C/TXBD %p n %x b %x off %x opt %x\n",
1231  bd, bd->hw_next, bd->hw_bufp,
1232  bd->hw_off_len, bd->hw_options);
1233 
1234  len = bd->hw_off_len & CPPI_BUFFER_LEN_MASK;
1235  tx_ch->channel.actual_len += len;
1236 
1237  tx_ch->last_processed = bd;
1238 
1239  /* write completion register to acknowledge
1240  * processing of completed BDs, and possibly
1241  * release the IRQ; EOQ might not be set ...
1242  *
1243  * REVISIT use the same ack strategy as rx
1244  *
1245  * REVISIT have observed bit 18 set; huh??
1246  */
1247  /* if ((bd->hw_options & CPPI_EOQ_MASK)) */
1248  musb_writel(&tx_ram->tx_complete, 0, bd->dma);
1249 
1250  /* stop scanning on end-of-segment */
1251  if (bd->hw_next == 0)
1252  completed = true;
1253  }
1254 
1255  /* on end of segment, maybe go to next one */
1256  if (completed) {
1257  /* cppi_dump_tx(4, tx_ch, "/complete"); */
1258 
1259  /* transfer more, or report completion */
1260  if (tx_ch->offset >= tx_ch->buf_len) {
1261  tx_ch->head = NULL;
1262  tx_ch->tail = NULL;
1263  tx_ch->channel.status = MUSB_DMA_STATUS_FREE;
1264 
1265  hw_ep = tx_ch->hw_ep;
1266 
1267  musb_dma_completion(musb, index + 1, 1);
1268 
1269  } else {
1270  /* Bigger transfer than we could fit in
1271  * that first batch of descriptors...
1272  */
1273  cppi_next_tx_segment(musb, tx_ch);
1274  }
1275  } else
1276  tx_ch->head = bd;
1277  }
1278 
1279  /* Start processing the RX block */
1280  for (index = 0; rx; rx = rx >> 1, index++) {
1281 
1282  if (rx & 1) {
1283  struct cppi_channel *rx_ch;
1284 
1285  rx_ch = cppi->rx + index;
1286 
1287  /* let incomplete dma segments finish */
1288  if (!cppi_rx_scan(cppi, index))
1289  continue;
1290 
1291  /* start another dma segment if needed */
1292  if (rx_ch->channel.actual_len != rx_ch->buf_len
1293  && rx_ch->channel.actual_len
1294  == rx_ch->offset) {
1295  cppi_next_rx_segment(musb, rx_ch, 1);
1296  continue;
1297  }
1298 
1299  /* all segments completed! */
1300  rx_ch->channel.status = MUSB_DMA_STATUS_FREE;
1301 
1302  hw_ep = rx_ch->hw_ep;
1303 
1304  core_rxirq_disable(tibase, index + 1);
1305  musb_dma_completion(musb, index + 1, 0);
1306  }
1307  }
1308 
1309  /* write to CPPI EOI register to re-enable interrupts */
1310  musb_writel(tibase, DAVINCI_CPPI_EOI_REG, 0);
1311 
1312  if (cppi->irq)
1313  spin_unlock_irqrestore(&musb->lock, flags);
1314 
1315  return IRQ_HANDLED;
1316 }
1317 
1318 /* Instantiate a software object representing a DMA controller. */
1319 struct dma_controller *__devinit
1320 dma_controller_create(struct musb *musb, void __iomem *mregs)
1321 {
1322  struct cppi *controller;
1323  struct device *dev = musb->controller;
1324  struct platform_device *pdev = to_platform_device(dev);
1325  int irq = platform_get_irq_byname(pdev, "dma");
1326 
1327  controller = kzalloc(sizeof *controller, GFP_KERNEL);
1328  if (!controller)
1329  return NULL;
1330 
1331  controller->mregs = mregs;
1332  controller->tibase = mregs - DAVINCI_BASE_OFFSET;
1333 
1334  controller->musb = musb;
1335  controller->controller.start = cppi_controller_start;
1336  controller->controller.stop = cppi_controller_stop;
1337  controller->controller.channel_alloc = cppi_channel_allocate;
1338  controller->controller.channel_release = cppi_channel_release;
1339  controller->controller.channel_program = cppi_channel_program;
1340  controller->controller.channel_abort = cppi_channel_abort;
1341 
1342  /* NOTE: allocating from on-chip SRAM would give the least
1343  * contention for memory access, if that ever matters here.
1344  */
1345 
1346  /* setup BufferPool */
1347  controller->pool = dma_pool_create("cppi",
1348  controller->musb->controller,
1349  sizeof(struct cppi_descriptor),
1351  if (!controller->pool) {
1352  kfree(controller);
1353  return NULL;
1354  }
1355 
1356  if (irq > 0) {
1357  if (request_irq(irq, cppi_interrupt, 0, "cppi-dma", musb)) {
1358  dev_err(dev, "request_irq %d failed!\n", irq);
1359  dma_controller_destroy(&controller->controller);
1360  return NULL;
1361  }
1362  controller->irq = irq;
1363  }
1364 
1365  return &controller->controller;
1366 }
1367 
1368 /*
1369  * Destroy a previously-instantiated DMA controller.
1370  */
1372 {
1373  struct cppi *cppi;
1374 
1375  cppi = container_of(c, struct cppi, controller);
1376 
1377  if (cppi->irq)
1378  free_irq(cppi->irq, cppi->musb);
1379 
1380  /* assert: caller stopped the controller first */
1381  dma_pool_destroy(cppi->pool);
1382 
1383  kfree(cppi);
1384 }
1385 
1386 /*
1387  * Context: controller irqlocked, endpoint selected
1388  */
1389 static int cppi_channel_abort(struct dma_channel *channel)
1390 {
1391  struct cppi_channel *cppi_ch;
1392  struct cppi *controller;
1393  void __iomem *mbase;
1394  void __iomem *tibase;
1395  void __iomem *regs;
1396  u32 value;
1397  struct cppi_descriptor *queue;
1398 
1399  cppi_ch = container_of(channel, struct cppi_channel, channel);
1400 
1401  controller = cppi_ch->controller;
1402 
1403  switch (channel->status) {
1406  /* from RX or TX fault irq handler */
1407  case MUSB_DMA_STATUS_BUSY:
1408  /* the hardware needs shutting down */
1409  regs = cppi_ch->hw_ep->regs;
1410  break;
1412  case MUSB_DMA_STATUS_FREE:
1413  return 0;
1414  default:
1415  return -EINVAL;
1416  }
1417 
1418  if (!cppi_ch->transmit && cppi_ch->head)
1419  cppi_dump_rxq(3, "/abort", cppi_ch);
1420 
1421  mbase = controller->mregs;
1422  tibase = controller->tibase;
1423 
1424  queue = cppi_ch->head;
1425  cppi_ch->head = NULL;
1426  cppi_ch->tail = NULL;
1427 
1428  /* REVISIT should rely on caller having done this,
1429  * and caller should rely on us not changing it.
1430  * peripheral code is safe ... check host too.
1431  */
1432  musb_ep_select(mbase, cppi_ch->index + 1);
1433 
1434  if (cppi_ch->transmit) {
1435  struct cppi_tx_stateram __iomem *tx_ram;
1436  /* REVISIT put timeouts on these controller handshakes */
1437 
1438  cppi_dump_tx(6, cppi_ch, " (teardown)");
1439 
1440  /* teardown DMA engine then usb core */
1441  do {
1442  value = musb_readl(tibase, DAVINCI_TXCPPI_TEAR_REG);
1443  } while (!(value & CPPI_TEAR_READY));
1444  musb_writel(tibase, DAVINCI_TXCPPI_TEAR_REG, cppi_ch->index);
1445 
1446  tx_ram = cppi_ch->state_ram;
1447  do {
1448  value = musb_readl(&tx_ram->tx_complete, 0);
1449  } while (0xFFFFFFFC != value);
1450 
1451  /* FIXME clean up the transfer state ... here?
1452  * the completion routine should get called with
1453  * an appropriate status code.
1454  */
1455 
1456  value = musb_readw(regs, MUSB_TXCSR);
1457  value &= ~MUSB_TXCSR_DMAENAB;
1458  value |= MUSB_TXCSR_FLUSHFIFO;
1459  musb_writew(regs, MUSB_TXCSR, value);
1460  musb_writew(regs, MUSB_TXCSR, value);
1461 
1462  /*
1463  * 1. Write to completion Ptr value 0x1(bit 0 set)
1464  * (write back mode)
1465  * 2. Wait for abort interrupt and then put the channel in
1466  * compare mode by writing 1 to the tx_complete register.
1467  */
1468  cppi_reset_tx(tx_ram, 1);
1469  cppi_ch->head = NULL;
1470  musb_writel(&tx_ram->tx_complete, 0, 1);
1471  cppi_dump_tx(5, cppi_ch, " (done teardown)");
1472 
1473  /* REVISIT tx side _should_ clean up the same way
1474  * as the RX side ... this does no cleanup at all!
1475  */
1476 
1477  } else /* RX */ {
1478  u16 csr;
1479 
1480  /* NOTE: docs don't guarantee any of this works ... we
1481  * expect that if the usb core stops telling the cppi core
1482  * to pull more data from it, then it'll be safe to flush
1483  * current RX DMA state iff any pending fifo transfer is done.
1484  */
1485 
1486  core_rxirq_disable(tibase, cppi_ch->index + 1);
1487 
1488  /* for host, ensure ReqPkt is never set again */
1489  if (is_host_active(cppi_ch->controller->musb)) {
1490  value = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
1491  value &= ~((0x3) << (cppi_ch->index * 2));
1492  musb_writel(tibase, DAVINCI_AUTOREQ_REG, value);
1493  }
1494 
1495  csr = musb_readw(regs, MUSB_RXCSR);
1496 
1497  /* for host, clear (just) ReqPkt at end of current packet(s) */
1498  if (is_host_active(cppi_ch->controller->musb)) {
1499  csr |= MUSB_RXCSR_H_WZC_BITS;
1500  csr &= ~MUSB_RXCSR_H_REQPKT;
1501  } else
1502  csr |= MUSB_RXCSR_P_WZC_BITS;
1503 
1504  /* clear dma enable */
1505  csr &= ~(MUSB_RXCSR_DMAENAB);
1506  musb_writew(regs, MUSB_RXCSR, csr);
1507  csr = musb_readw(regs, MUSB_RXCSR);
1508 
1509  /* Quiesce: wait for current dma to finish (if not cleanup).
1510  * We can't use bit zero of stateram->rx_sop, since that
1511  * refers to an entire "DMA packet" not just emptying the
1512  * current fifo. Most segments need multiple usb packets.
1513  */
1514  if (channel->status == MUSB_DMA_STATUS_BUSY)
1515  udelay(50);
1516 
1517  /* scan the current list, reporting any data that was
1518  * transferred and acking any IRQ
1519  */
1520  cppi_rx_scan(controller, cppi_ch->index);
1521 
1522  /* clobber the existing state once it's idle
1523  *
1524  * NOTE: arguably, we should also wait for all the other
1525  * RX channels to quiesce (how??) and then temporarily
1526  * disable RXCPPI_CTRL_REG ... but it seems that we can
1527  * rely on the controller restarting from state ram, with
1528  * only RXCPPI_BUFCNT state being bogus. BUFCNT will
1529  * correct itself after the next DMA transfer though.
1530  *
1531  * REVISIT does using rndis mode change that?
1532  */
1533  cppi_reset_rx(cppi_ch->state_ram);
1534 
1535  /* next DMA request _should_ load cppi head ptr */
1536 
1537  /* ... we don't "free" that list, only mutate it in place. */
1538  cppi_dump_rx(5, cppi_ch, " (done abort)");
1539 
1540  /* clean up previously pending bds */
1541  cppi_bd_free(cppi_ch, cppi_ch->last_processed);
1542  cppi_ch->last_processed = NULL;
1543 
1544  while (queue) {
1545  struct cppi_descriptor *tmp = queue->next;
1546 
1547  cppi_bd_free(cppi_ch, queue);
1548  queue = tmp;
1549  }
1550  }
1551 
1552  channel->status = MUSB_DMA_STATUS_FREE;
1553  cppi_ch->buf_dma = 0;
1554  cppi_ch->offset = 0;
1555  cppi_ch->buf_len = 0;
1556  cppi_ch->maxpacket = 0;
1557  return 0;
1558 }
1559 
1560 /* TBD Queries:
1561  *
1562  * Power Management ... probably turn off cppi during suspend, restart;
1563  * check state ram? Clocking is presumably shared with usb core.
1564  */