Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
kgdb.c
Go to the documentation of this file.
1 /*!**************************************************************************
2 *!
3 *! FILE NAME : kgdb.c
4 *!
5 *! DESCRIPTION: Implementation of the gdb stub with respect to ETRAX 100.
6 *! It is a mix of arch/m68k/kernel/kgdb.c and cris_stub.c.
7 *!
8 *!---------------------------------------------------------------------------
9 *! HISTORY
10 *!
11 *! DATE NAME CHANGES
12 *! ---- ---- -------
13 *! Apr 26 1999 Hendrik Ruijter Initial version.
14 *! May 6 1999 Hendrik Ruijter Removed call to strlen in libc and removed
15 *! struct assignment as it generates calls to
16 *! memcpy in libc.
17 *! Jun 17 1999 Hendrik Ruijter Added gdb 4.18 support. 'X', 'qC' and 'qL'.
18 *! Jul 21 1999 Bjorn Wesen eLinux port
19 *!
20 *!---------------------------------------------------------------------------
21 *!
22 *! (C) Copyright 1999, Axis Communications AB, LUND, SWEDEN
23 *!
24 *!**************************************************************************/
25 /* @(#) cris_stub.c 1.3 06/17/99 */
26 
27 /*
28  * kgdb usage notes:
29  * -----------------
30  *
31  * If you select CONFIG_ETRAX_KGDB in the configuration, the kernel will be
32  * built with different gcc flags: "-g" is added to get debug infos, and
33  * "-fomit-frame-pointer" is omitted to make debugging easier. Since the
34  * resulting kernel will be quite big (approx. > 7 MB), it will be stripped
35  * before compresion. Such a kernel will behave just as usually, except if
36  * given a "debug=<device>" command line option. (Only serial devices are
37  * allowed for <device>, i.e. no printers or the like; possible values are
38  * machine depedend and are the same as for the usual debug device, the one
39  * for logging kernel messages.) If that option is given and the device can be
40  * initialized, the kernel will connect to the remote gdb in trap_init(). The
41  * serial parameters are fixed to 8N1 and 115200 bps, for easyness of
42  * implementation.
43  *
44  * To start a debugging session, start that gdb with the debugging kernel
45  * image (the one with the symbols, vmlinux.debug) named on the command line.
46  * This file will be used by gdb to get symbol and debugging infos about the
47  * kernel. Next, select remote debug mode by
48  * target remote <device>
49  * where <device> is the name of the serial device over which the debugged
50  * machine is connected. Maybe you have to adjust the baud rate by
51  * set remotebaud <rate>
52  * or also other parameters with stty:
53  * shell stty ... </dev/...
54  * If the kernel to debug has already booted, it waited for gdb and now
55  * connects, and you'll see a breakpoint being reported. If the kernel isn't
56  * running yet, start it now. The order of gdb and the kernel doesn't matter.
57  * Another thing worth knowing about in the getting-started phase is how to
58  * debug the remote protocol itself. This is activated with
59  * set remotedebug 1
60  * gdb will then print out each packet sent or received. You'll also get some
61  * messages about the gdb stub on the console of the debugged machine.
62  *
63  * If all that works, you can use lots of the usual debugging techniques on
64  * the kernel, e.g. inspecting and changing variables/memory, setting
65  * breakpoints, single stepping and so on. It's also possible to interrupt the
66  * debugged kernel by pressing C-c in gdb. Have fun! :-)
67  *
68  * The gdb stub is entered (and thus the remote gdb gets control) in the
69  * following situations:
70  *
71  * - If breakpoint() is called. This is just after kgdb initialization, or if
72  * a breakpoint() call has been put somewhere into the kernel source.
73  * (Breakpoints can of course also be set the usual way in gdb.)
74  * In eLinux, we call breakpoint() in init/main.c after IRQ initialization.
75  *
76  * - If there is a kernel exception, i.e. bad_super_trap() or die_if_kernel()
77  * are entered. All the CPU exceptions are mapped to (more or less..., see
78  * the hard_trap_info array below) appropriate signal, which are reported
79  * to gdb. die_if_kernel() is usually called after some kind of access
80  * error and thus is reported as SIGSEGV.
81  *
82  * - When panic() is called. This is reported as SIGABRT.
83  *
84  * - If C-c is received over the serial line, which is treated as
85  * SIGINT.
86  *
87  * Of course, all these signals are just faked for gdb, since there is no
88  * signal concept as such for the kernel. It also isn't possible --obviously--
89  * to set signal handlers from inside gdb, or restart the kernel with a
90  * signal.
91  *
92  * Current limitations:
93  *
94  * - While the kernel is stopped, interrupts are disabled for safety reasons
95  * (i.e., variables not changing magically or the like). But this also
96  * means that the clock isn't running anymore, and that interrupts from the
97  * hardware may get lost/not be served in time. This can cause some device
98  * errors...
99  *
100  * - When single-stepping, only one instruction of the current thread is
101  * executed, but interrupts are allowed for that time and will be serviced
102  * if pending. Be prepared for that.
103  *
104  * - All debugging happens in kernel virtual address space. There's no way to
105  * access physical memory not mapped in kernel space, or to access user
106  * space. A way to work around this is using get_user_long & Co. in gdb
107  * expressions, but only for the current process.
108  *
109  * - Interrupting the kernel only works if interrupts are currently allowed,
110  * and the interrupt of the serial line isn't blocked by some other means
111  * (IPL too high, disabled, ...)
112  *
113  * - The gdb stub is currently not reentrant, i.e. errors that happen therein
114  * (e.g. accessing invalid memory) may not be caught correctly. This could
115  * be removed in future by introducing a stack of struct registers.
116  *
117  */
118 
119 /*
120  * To enable debugger support, two things need to happen. One, a
121  * call to kgdb_init() is necessary in order to allow any breakpoints
122  * or error conditions to be properly intercepted and reported to gdb.
123  * Two, a breakpoint needs to be generated to begin communication. This
124  * is most easily accomplished by a call to breakpoint().
125  *
126  * The following gdb commands are supported:
127  *
128  * command function Return value
129  *
130  * g return the value of the CPU registers hex data or ENN
131  * G set the value of the CPU registers OK or ENN
132  *
133  * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN
134  * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN
135  *
136  * c Resume at current address SNN ( signal NN)
137  * cAA..AA Continue at address AA..AA SNN
138  *
139  * s Step one instruction SNN
140  * sAA..AA Step one instruction from AA..AA SNN
141  *
142  * k kill
143  *
144  * ? What was the last sigval ? SNN (signal NN)
145  *
146  * bBB..BB Set baud rate to BB..BB OK or BNN, then sets
147  * baud rate
148  *
149  * All commands and responses are sent with a packet which includes a
150  * checksum. A packet consists of
151  *
152  * $<packet info>#<checksum>.
153  *
154  * where
155  * <packet info> :: <characters representing the command or response>
156  * <checksum> :: < two hex digits computed as modulo 256 sum of <packetinfo>>
157  *
158  * When a packet is received, it is first acknowledged with either '+' or '-'.
159  * '+' indicates a successful transfer. '-' indicates a failed transfer.
160  *
161  * Example:
162  *
163  * Host: Reply:
164  * $m0,10#2a +$00010203040506070809101112131415#42
165  *
166  */
167 
168 
169 #include <linux/string.h>
170 #include <linux/signal.h>
171 #include <linux/kernel.h>
172 #include <linux/delay.h>
173 #include <linux/linkage.h>
174 #include <linux/reboot.h>
175 
176 #include <asm/setup.h>
177 #include <asm/ptrace.h>
178 
179 #include <arch/svinto.h>
180 #include <asm/irq.h>
181 
182 static int kgdb_started = 0;
183 
184 /********************************* Register image ****************************/
185 /* Use the order of registers as defined in "AXIS ETRAX CRIS Programmer's
186  Reference", p. 1-1, with the additional register definitions of the
187  ETRAX 100LX in cris-opc.h.
188  There are 16 general 32-bit registers, R0-R15, where R14 is the stack
189  pointer, SP, and R15 is the program counter, PC.
190  There are 16 special registers, P0-P15, where three of the unimplemented
191  registers, P0, P4 and P8, are reserved as zero-registers. A read from
192  any of these registers returns zero and a write has no effect. */
193 
194 typedef
195 struct register_image
196 {
197  /* Offset */
198  unsigned int r0; /* 0x00 */
199  unsigned int r1; /* 0x04 */
200  unsigned int r2; /* 0x08 */
201  unsigned int r3; /* 0x0C */
202  unsigned int r4; /* 0x10 */
203  unsigned int r5; /* 0x14 */
204  unsigned int r6; /* 0x18 */
205  unsigned int r7; /* 0x1C */
206  unsigned int r8; /* 0x20 Frame pointer */
207  unsigned int r9; /* 0x24 */
208  unsigned int r10; /* 0x28 */
209  unsigned int r11; /* 0x2C */
210  unsigned int r12; /* 0x30 */
211  unsigned int r13; /* 0x34 */
212  unsigned int sp; /* 0x38 Stack pointer */
213  unsigned int pc; /* 0x3C Program counter */
214 
215  unsigned char p0; /* 0x40 8-bit zero-register */
216  unsigned char vr; /* 0x41 Version register */
217 
218  unsigned short p4; /* 0x42 16-bit zero-register */
219  unsigned short ccr; /* 0x44 Condition code register */
220 
221  unsigned int mof; /* 0x46 Multiply overflow register */
222 
223  unsigned int p8; /* 0x4A 32-bit zero-register */
224  unsigned int ibr; /* 0x4E Interrupt base register */
225  unsigned int irp; /* 0x52 Interrupt return pointer */
226  unsigned int srp; /* 0x56 Subroutine return pointer */
227  unsigned int bar; /* 0x5A Breakpoint address register */
228  unsigned int dccr; /* 0x5E Double condition code register */
229  unsigned int brp; /* 0x62 Breakpoint return pointer (pc in caller) */
230  unsigned int usp; /* 0x66 User mode stack pointer */
231 } registers;
232 
233 /************** Prototypes for local library functions ***********************/
234 
235 /* Copy of strcpy from libc. */
236 static char *gdb_cris_strcpy (char *s1, const char *s2);
237 
238 /* Copy of strlen from libc. */
239 static int gdb_cris_strlen (const char *s);
240 
241 /* Copy of memchr from libc. */
242 static void *gdb_cris_memchr (const void *s, int c, int n);
243 
244 /* Copy of strtol from libc. Does only support base 16. */
245 static int gdb_cris_strtol (const char *s, char **endptr, int base);
246 
247 /********************** Prototypes for local functions. **********************/
248 /* Copy the content of a register image into another. The size n is
249  the size of the register image. Due to struct assignment generation of
250  memcpy in libc. */
251 static void copy_registers (registers *dptr, registers *sptr, int n);
252 
253 /* Copy the stored registers from the stack. Put the register contents
254  of thread thread_id in the struct reg. */
255 static void copy_registers_from_stack (int thread_id, registers *reg);
256 
257 /* Copy the registers to the stack. Put the register contents of thread
258  thread_id from struct reg to the stack. */
259 static void copy_registers_to_stack (int thread_id, registers *reg);
260 
261 /* Write a value to a specified register regno in the register image
262  of the current thread. */
263 static int write_register (int regno, char *val);
264 
265 /* Write a value to a specified register in the stack of a thread other
266  than the current thread. */
267 static int write_stack_register(int thread_id, int regno, char *valptr);
268 
269 /* Read a value from a specified register in the register image. Returns the
270  status of the read operation. The register value is returned in valptr. */
271 static int read_register (char regno, unsigned int *valptr);
272 
273 /* Serial port, reads one character. ETRAX 100 specific. from debugport.c */
274 int getDebugChar (void);
275 
276 /* Serial port, writes one character. ETRAX 100 specific. from debugport.c */
277 void putDebugChar (int val);
278 
279 void enableDebugIRQ (void);
280 
281 /* Returns the integer equivalent of a hexadecimal character. */
282 static int hex (char ch);
283 
284 /* Convert the memory, pointed to by mem into hexadecimal representation.
285  Put the result in buf, and return a pointer to the last character
286  in buf (null). */
287 static char *mem2hex (char *buf, unsigned char *mem, int count);
288 
289 /* Convert the array, in hexadecimal representation, pointed to by buf into
290  binary representation. Put the result in mem, and return a pointer to
291  the character after the last byte written. */
292 static unsigned char *hex2mem (unsigned char *mem, char *buf, int count);
293 
294 /* Put the content of the array, in binary representation, pointed to by buf
295  into memory pointed to by mem, and return a pointer to
296  the character after the last byte written. */
297 static unsigned char *bin2mem (unsigned char *mem, unsigned char *buf, int count);
298 
299 /* Await the sequence $<data>#<checksum> and store <data> in the array buffer
300  returned. */
301 static void getpacket (char *buffer);
302 
303 /* Send $<data>#<checksum> from the <data> in the array buffer. */
304 static void putpacket (char *buffer);
305 
306 /* Build and send a response packet in order to inform the host the
307  stub is stopped. */
308 static void stub_is_stopped (int sigval);
309 
310 /* All expected commands are sent from remote.c. Send a response according
311  to the description in remote.c. */
312 static void handle_exception (int sigval);
313 
314 /* Performs a complete re-start from scratch. ETRAX specific. */
315 static void kill_restart (void);
316 
317 /******************** Prototypes for global functions. ***********************/
318 
319 /* The string str is prepended with the GDB printout token and sent. */
320 void putDebugString (const unsigned char *str, int length); /* used by etrax100ser.c */
321 
322 /* The hook for both static (compiled) and dynamic breakpoints set by GDB.
323  ETRAX 100 specific. */
324 void handle_breakpoint (void); /* used by irq.c */
325 
326 /* The hook for an interrupt generated by GDB. ETRAX 100 specific. */
327 void handle_interrupt (void); /* used by irq.c */
328 
329 /* A static breakpoint to be used at startup. */
330 void breakpoint (void); /* called by init/main.c */
331 
332 /* From osys_int.c, executing_task contains the number of the current
333  executing task in osys. Does not know of object-oriented threads. */
334 extern unsigned char executing_task;
335 
336 /* The number of characters used for a 64 bit thread identifier. */
337 #define HEXCHARS_IN_THREAD_ID 16
338 
339 /* Avoid warning as the internal_stack is not used in the C-code. */
340 #define USEDVAR(name) { if (name) { ; } }
341 #define USEDFUN(name) { void (*pf)(void) = (void *)name; USEDVAR(pf) }
342 
343 /********************************** Packet I/O ******************************/
344 /* BUFMAX defines the maximum number of characters in
345  inbound/outbound buffers */
346 #define BUFMAX 512
347 
348 /* Run-length encoding maximum length. Send 64 at most. */
349 #define RUNLENMAX 64
350 
351 /* The inbound/outbound buffers used in packet I/O */
352 static char remcomInBuffer[BUFMAX];
353 static char remcomOutBuffer[BUFMAX];
354 
355 /* Error and warning messages. */
357 {
359 };
360 static char *error_message[] =
361 {
362  "",
363  "E01 Set current or general thread - H[c,g] - internal error.",
364  "E02 Change register content - P - cannot change read-only register.",
365  "E03 Thread is not alive.", /* T, not used. */
366  "E04 The command is not supported - [s,C,S,!,R,d,r] - internal error.",
367  "E05 Change register content - P - the register is not implemented..",
368  "E06 Change memory content - M - internal error.",
369  "E07 Change register content - P - the register is not stored on the stack"
370 };
371 /********************************* Register image ****************************/
372 /* Use the order of registers as defined in "AXIS ETRAX CRIS Programmer's
373  Reference", p. 1-1, with the additional register definitions of the
374  ETRAX 100LX in cris-opc.h.
375  There are 16 general 32-bit registers, R0-R15, where R14 is the stack
376  pointer, SP, and R15 is the program counter, PC.
377  There are 16 special registers, P0-P15, where three of the unimplemented
378  registers, P0, P4 and P8, are reserved as zero-registers. A read from
379  any of these registers returns zero and a write has no effect. */
381 {
382  R0, R1, R2, R3,
383  R4, R5, R6, R7,
384  R8, R9, R10, R11,
385  R12, R13, SP, PC,
386  P0, VR, P2, P3,
387  P4, CCR, P6, MOF,
388  P8, IBR, IRP, SRP,
390 };
391 
392 /* The register sizes of the registers in register_name. An unimplemented register
393  is designated by size 0 in this array. */
394 static int register_size[] =
395 {
396  4, 4, 4, 4,
397  4, 4, 4, 4,
398  4, 4, 4, 4,
399  4, 4, 4, 4,
400  1, 1, 0, 0,
401  2, 2, 0, 4,
402  4, 4, 4, 4,
403  4, 4, 4, 4
404 };
405 
406 /* Contains the register image of the executing thread in the assembler
407  part of the code in order to avoid horrible addressing modes. */
408 static registers reg;
409 
410 /* FIXME: Should this be used? Delete otherwise. */
411 /* Contains the assumed consistency state of the register image. Uses the
412  enum error_type for state information. */
413 static int consistency_status = SUCCESS;
414 
415 /********************************** Handle exceptions ************************/
416 /* The variable reg contains the register image associated with the
417  current_thread_c variable. It is a complete register image created at
418  entry. The reg_g contains a register image of a task where the general
419  registers are taken from the stack and all special registers are taken
420  from the executing task. It is associated with current_thread_g and used
421  in order to provide access mainly for 'g', 'G' and 'P'.
422 */
423 
424 /* Need two task id pointers in order to handle Hct and Hgt commands. */
425 static int current_thread_c = 0;
426 static int current_thread_g = 0;
427 
428 /* Need two register images in order to handle Hct and Hgt commands. The
429  variable reg_g is in addition to reg above. */
430 static registers reg_g;
431 
432 /********************************** Breakpoint *******************************/
433 /* Use an internal stack in the breakpoint and interrupt response routines */
434 #define INTERNAL_STACK_SIZE 1024
436 
437 /* Due to the breakpoint return pointer, a state variable is needed to keep
438  track of whether it is a static (compiled) or dynamic (gdb-invoked)
439  breakpoint to be handled. A static breakpoint uses the content of register
440  BRP as it is whereas a dynamic breakpoint requires subtraction with 2
441  in order to execute the instruction. The first breakpoint is static. */
442 static unsigned char is_dyn_brkp = 0;
443 
444 /********************************* String library ****************************/
445 /* Single-step over library functions creates trap loops. */
446 
447 /* Copy char s2[] to s1[]. */
448 static char*
449 gdb_cris_strcpy (char *s1, const char *s2)
450 {
451  char *s = s1;
452 
453  for (s = s1; (*s++ = *s2++) != '\0'; )
454  ;
455  return (s1);
456 }
457 
458 /* Find length of s[]. */
459 static int
460 gdb_cris_strlen (const char *s)
461 {
462  const char *sc;
463 
464  for (sc = s; *sc != '\0'; sc++)
465  ;
466  return (sc - s);
467 }
468 
469 /* Find first occurrence of c in s[n]. */
470 static void*
471 gdb_cris_memchr (const void *s, int c, int n)
472 {
473  const unsigned char uc = c;
474  const unsigned char *su;
475 
476  for (su = s; 0 < n; ++su, --n)
477  if (*su == uc)
478  return ((void *)su);
479  return (NULL);
480 }
481 /******************************* Standard library ****************************/
482 /* Single-step over library functions creates trap loops. */
483 /* Convert string to long. */
484 static int
485 gdb_cris_strtol (const char *s, char **endptr, int base)
486 {
487  char *s1;
488  char *sd;
489  int x = 0;
490 
491  for (s1 = (char*)s; (sd = gdb_cris_memchr(hex_asc, *s1, base)) != NULL; ++s1)
492  x = x * base + (sd - hex_asc);
493 
494  if (endptr)
495  {
496  /* Unconverted suffix is stored in endptr unless endptr is NULL. */
497  *endptr = s1;
498  }
499 
500  return x;
501 }
502 
503 /********************************* Register image ****************************/
504 /* Copy the content of a register image into another. The size n is
505  the size of the register image. Due to struct assignment generation of
506  memcpy in libc. */
507 static void
508 copy_registers (registers *dptr, registers *sptr, int n)
509 {
510  unsigned char *dreg;
511  unsigned char *sreg;
512 
513  for (dreg = (unsigned char*)dptr, sreg = (unsigned char*)sptr; n > 0; n--)
514  *dreg++ = *sreg++;
515 }
516 
517 #ifdef PROCESS_SUPPORT
518 /* Copy the stored registers from the stack. Put the register contents
519  of thread thread_id in the struct reg. */
520 static void
521 copy_registers_from_stack (int thread_id, registers *regptr)
522 {
523  int j;
524  stack_registers *s = (stack_registers *)stack_list[thread_id];
525  unsigned int *d = (unsigned int *)regptr;
526 
527  for (j = 13; j >= 0; j--)
528  *d++ = s->r[j];
529  regptr->sp = (unsigned int)stack_list[thread_id];
530  regptr->pc = s->pc;
531  regptr->dccr = s->dccr;
532  regptr->srp = s->srp;
533 }
534 
535 /* Copy the registers to the stack. Put the register contents of thread
536  thread_id from struct reg to the stack. */
537 static void
538 copy_registers_to_stack (int thread_id, registers *regptr)
539 {
540  int i;
541  stack_registers *d = (stack_registers *)stack_list[thread_id];
542  unsigned int *s = (unsigned int *)regptr;
543 
544  for (i = 0; i < 14; i++) {
545  d->r[i] = *s++;
546  }
547  d->pc = regptr->pc;
548  d->dccr = regptr->dccr;
549  d->srp = regptr->srp;
550 }
551 #endif
552 
553 /* Write a value to a specified register in the register image of the current
554  thread. Returns status code SUCCESS, E02 or E05. */
555 static int
556 write_register (int regno, char *val)
557 {
558  int status = SUCCESS;
559  registers *current_reg = &reg;
560 
561  if (regno >= R0 && regno <= PC) {
562  /* 32-bit register with simple offset. */
563  hex2mem ((unsigned char *)current_reg + regno * sizeof(unsigned int),
564  val, sizeof(unsigned int));
565  }
566  else if (regno == P0 || regno == VR || regno == P4 || regno == P8) {
567  /* Do not support read-only registers. */
568  status = E02;
569  }
570  else if (regno == CCR) {
571  /* 16 bit register with complex offset. (P4 is read-only, P6 is not implemented,
572  and P7 (MOF) is 32 bits in ETRAX 100LX. */
573  hex2mem ((unsigned char *)&(current_reg->ccr) + (regno-CCR) * sizeof(unsigned short),
574  val, sizeof(unsigned short));
575  }
576  else if (regno >= MOF && regno <= USP) {
577  /* 32 bit register with complex offset. (P8 has been taken care of.) */
578  hex2mem ((unsigned char *)&(current_reg->ibr) + (regno-IBR) * sizeof(unsigned int),
579  val, sizeof(unsigned int));
580  }
581  else {
582  /* Do not support nonexisting or unimplemented registers (P2, P3, and P6). */
583  status = E05;
584  }
585  return status;
586 }
587 
588 #ifdef PROCESS_SUPPORT
589 /* Write a value to a specified register in the stack of a thread other
590  than the current thread. Returns status code SUCCESS or E07. */
591 static int
592 write_stack_register (int thread_id, int regno, char *valptr)
593 {
594  int status = SUCCESS;
595  stack_registers *d = (stack_registers *)stack_list[thread_id];
596  unsigned int val;
597 
598  hex2mem ((unsigned char *)&val, valptr, sizeof(unsigned int));
599  if (regno >= R0 && regno < SP) {
600  d->r[regno] = val;
601  }
602  else if (regno == SP) {
603  stack_list[thread_id] = val;
604  }
605  else if (regno == PC) {
606  d->pc = val;
607  }
608  else if (regno == SRP) {
609  d->srp = val;
610  }
611  else if (regno == DCCR) {
612  d->dccr = val;
613  }
614  else {
615  /* Do not support registers in the current thread. */
616  status = E07;
617  }
618  return status;
619 }
620 #endif
621 
622 /* Read a value from a specified register in the register image. Returns the
623  value in the register or -1 for non-implemented registers.
624  Should check consistency_status after a call which may be E05 after changes
625  in the implementation. */
626 static int
627 read_register (char regno, unsigned int *valptr)
628 {
629  registers *current_reg = &reg;
630 
631  if (regno >= R0 && regno <= PC) {
632  /* 32-bit register with simple offset. */
633  *valptr = *(unsigned int *)((char *)current_reg + regno * sizeof(unsigned int));
634  return SUCCESS;
635  }
636  else if (regno == P0 || regno == VR) {
637  /* 8 bit register with complex offset. */
638  *valptr = (unsigned int)(*(unsigned char *)
639  ((char *)&(current_reg->p0) + (regno-P0) * sizeof(char)));
640  return SUCCESS;
641  }
642  else if (regno == P4 || regno == CCR) {
643  /* 16 bit register with complex offset. */
644  *valptr = (unsigned int)(*(unsigned short *)
645  ((char *)&(current_reg->p4) + (regno-P4) * sizeof(unsigned short)));
646  return SUCCESS;
647  }
648  else if (regno >= MOF && regno <= USP) {
649  /* 32 bit register with complex offset. */
650  *valptr = *(unsigned int *)((char *)&(current_reg->p8)
651  + (regno-P8) * sizeof(unsigned int));
652  return SUCCESS;
653  }
654  else {
655  /* Do not support nonexisting or unimplemented registers (P2, P3, and P6). */
656  consistency_status = E05;
657  return E05;
658  }
659 }
660 
661 /********************************** Packet I/O ******************************/
662 /* Returns the integer equivalent of a hexadecimal character. */
663 static int
664 hex (char ch)
665 {
666  if ((ch >= 'a') && (ch <= 'f'))
667  return (ch - 'a' + 10);
668  if ((ch >= '0') && (ch <= '9'))
669  return (ch - '0');
670  if ((ch >= 'A') && (ch <= 'F'))
671  return (ch - 'A' + 10);
672  return (-1);
673 }
674 
675 /* Convert the memory, pointed to by mem into hexadecimal representation.
676  Put the result in buf, and return a pointer to the last character
677  in buf (null). */
678 
679 static int do_printk = 0;
680 
681 static char *
682 mem2hex(char *buf, unsigned char *mem, int count)
683 {
684  int i;
685  int ch;
686 
687  if (mem == NULL) {
688  /* Bogus read from m0. FIXME: What constitutes a valid address? */
689  for (i = 0; i < count; i++) {
690  *buf++ = '0';
691  *buf++ = '0';
692  }
693  } else {
694  /* Valid mem address. */
695  for (i = 0; i < count; i++) {
696  ch = *mem++;
697  buf = hex_byte_pack(buf, ch);
698  }
699  }
700 
701  /* Terminate properly. */
702  *buf = '\0';
703  return (buf);
704 }
705 
706 /* Convert the array, in hexadecimal representation, pointed to by buf into
707  binary representation. Put the result in mem, and return a pointer to
708  the character after the last byte written. */
709 static unsigned char*
710 hex2mem (unsigned char *mem, char *buf, int count)
711 {
712  int i;
713  unsigned char ch;
714  for (i = 0; i < count; i++) {
715  ch = hex (*buf++) << 4;
716  ch = ch + hex (*buf++);
717  *mem++ = ch;
718  }
719  return (mem);
720 }
721 
722 /* Put the content of the array, in binary representation, pointed to by buf
723  into memory pointed to by mem, and return a pointer to the character after
724  the last byte written.
725  Gdb will escape $, #, and the escape char (0x7d). */
726 static unsigned char*
727 bin2mem (unsigned char *mem, unsigned char *buf, int count)
728 {
729  int i;
730  unsigned char *next;
731  for (i = 0; i < count; i++) {
732  /* Check for any escaped characters. Be paranoid and
733  only unescape chars that should be escaped. */
734  if (*buf == 0x7d) {
735  next = buf + 1;
736  if (*next == 0x3 || *next == 0x4 || *next == 0x5D) /* #, $, ESC */
737  {
738  buf++;
739  *buf += 0x20;
740  }
741  }
742  *mem++ = *buf++;
743  }
744  return (mem);
745 }
746 
747 /* Await the sequence $<data>#<checksum> and store <data> in the array buffer
748  returned. */
749 static void
750 getpacket (char *buffer)
751 {
752  unsigned char checksum;
753  unsigned char xmitcsum;
754  int i;
755  int count;
756  char ch;
757  do {
758  while ((ch = getDebugChar ()) != '$')
759  /* Wait for the start character $ and ignore all other characters */;
760  checksum = 0;
761  xmitcsum = -1;
762  count = 0;
763  /* Read until a # or the end of the buffer is reached */
764  while (count < BUFMAX) {
765  ch = getDebugChar ();
766  if (ch == '#')
767  break;
768  checksum = checksum + ch;
769  buffer[count] = ch;
770  count = count + 1;
771  }
772  buffer[count] = '\0';
773 
774  if (ch == '#') {
775  xmitcsum = hex (getDebugChar ()) << 4;
776  xmitcsum += hex (getDebugChar ());
777  if (checksum != xmitcsum) {
778  /* Wrong checksum */
779  putDebugChar ('-');
780  }
781  else {
782  /* Correct checksum */
783  putDebugChar ('+');
784  /* If sequence characters are received, reply with them */
785  if (buffer[2] == ':') {
786  putDebugChar (buffer[0]);
787  putDebugChar (buffer[1]);
788  /* Remove the sequence characters from the buffer */
789  count = gdb_cris_strlen (buffer);
790  for (i = 3; i <= count; i++)
791  buffer[i - 3] = buffer[i];
792  }
793  }
794  }
795  } while (checksum != xmitcsum);
796 }
797 
798 /* Send $<data>#<checksum> from the <data> in the array buffer. */
799 
800 static void
801 putpacket(char *buffer)
802 {
803  int checksum;
804  int runlen;
805  int encode;
806 
807  do {
808  char *src = buffer;
809  putDebugChar ('$');
810  checksum = 0;
811  while (*src) {
812  /* Do run length encoding */
813  putDebugChar (*src);
814  checksum += *src;
815  runlen = 0;
816  while (runlen < RUNLENMAX && *src == src[runlen]) {
817  runlen++;
818  }
819  if (runlen > 3) {
820  /* Got a useful amount */
821  putDebugChar ('*');
822  checksum += '*';
823  encode = runlen + ' ' - 4;
824  putDebugChar (encode);
825  checksum += encode;
826  src += runlen;
827  }
828  else {
829  src++;
830  }
831  }
832  putDebugChar('#');
833  putDebugChar(hex_asc_hi(checksum));
834  putDebugChar(hex_asc_lo(checksum));
835  } while(kgdb_started && (getDebugChar() != '+'));
836 }
837 
838 /* The string str is prepended with the GDB printout token and sent. Required
839  in traditional implementations. */
840 void
841 putDebugString (const unsigned char *str, int length)
842 {
843  remcomOutBuffer[0] = 'O';
844  mem2hex(&remcomOutBuffer[1], (unsigned char *)str, length);
845  putpacket(remcomOutBuffer);
846 }
847 
848 /********************************** Handle exceptions ************************/
849 /* Build and send a response packet in order to inform the host the
850  stub is stopped. TAAn...:r...;n...:r...;n...:r...;
851  AA = signal number
852  n... = register number (hex)
853  r... = register contents
854  n... = `thread'
855  r... = thread process ID. This is a hex integer.
856  n... = other string not starting with valid hex digit.
857  gdb should ignore this n,r pair and go on to the next.
858  This way we can extend the protocol. */
859 static void
860 stub_is_stopped(int sigval)
861 {
862  char *ptr = remcomOutBuffer;
863  int regno;
864 
865  unsigned int reg_cont;
866  int status;
867 
868  /* Send trap type (converted to signal) */
869 
870  *ptr++ = 'T';
871  ptr = hex_byte_pack(ptr, sigval);
872 
873  /* Send register contents. We probably only need to send the
874  * PC, frame pointer and stack pointer here. Other registers will be
875  * explicitly asked for. But for now, send all.
876  */
877 
878  for (regno = R0; regno <= USP; regno++) {
879  /* Store n...:r...; for the registers in the buffer. */
880 
881  status = read_register (regno, &reg_cont);
882 
883  if (status == SUCCESS) {
884  ptr = hex_byte_pack(ptr, regno);
885  *ptr++ = ':';
886 
887  ptr = mem2hex(ptr, (unsigned char *)&reg_cont,
888  register_size[regno]);
889  *ptr++ = ';';
890  }
891 
892  }
893 
894 #ifdef PROCESS_SUPPORT
895  /* Store the registers of the executing thread. Assume that both step,
896  continue, and register content requests are with respect to this
897  thread. The executing task is from the operating system scheduler. */
898 
899  current_thread_c = executing_task;
900  current_thread_g = executing_task;
901 
902  /* A struct assignment translates into a libc memcpy call. Avoid
903  all libc functions in order to prevent recursive break points. */
904  copy_registers (&reg_g, &reg, sizeof(registers));
905 
906  /* Store thread:r...; with the executing task TID. */
907  gdb_cris_strcpy (&remcomOutBuffer[pos], "thread:");
908  pos += gdb_cris_strlen ("thread:");
909  remcomOutBuffer[pos++] = hex_asc_hi(executing_task);
910  remcomOutBuffer[pos++] = hex_asc_lo(executing_task);
911  gdb_cris_strcpy (&remcomOutBuffer[pos], ";");
912 #endif
913 
914  /* null-terminate and send it off */
915 
916  *ptr = 0;
917 
918  putpacket (remcomOutBuffer);
919 }
920 
921 /* All expected commands are sent from remote.c. Send a response according
922  to the description in remote.c. */
923 static void
924 handle_exception (int sigval)
925 {
926  /* Avoid warning of not used. */
927 
928  USEDFUN(handle_exception);
930 
931  /* Send response. */
932 
933  stub_is_stopped (sigval);
934 
935  for (;;) {
936  remcomOutBuffer[0] = '\0';
937  getpacket (remcomInBuffer);
938  switch (remcomInBuffer[0]) {
939  case 'g':
940  /* Read registers: g
941  Success: Each byte of register data is described by two hex digits.
942  Registers are in the internal order for GDB, and the bytes
943  in a register are in the same order the machine uses.
944  Failure: void. */
945 
946  {
947 #ifdef PROCESS_SUPPORT
948  /* Use the special register content in the executing thread. */
949  copy_registers (&reg_g, &reg, sizeof(registers));
950  /* Replace the content available on the stack. */
951  if (current_thread_g != executing_task) {
952  copy_registers_from_stack (current_thread_g, &reg_g);
953  }
954  mem2hex ((unsigned char *)remcomOutBuffer, (unsigned char *)&reg_g, sizeof(registers));
955 #else
956  mem2hex(remcomOutBuffer, (char *)&reg, sizeof(registers));
957 #endif
958  }
959  break;
960 
961  case 'G':
962  /* Write registers. GXX..XX
963  Each byte of register data is described by two hex digits.
964  Success: OK
965  Failure: void. */
966 #ifdef PROCESS_SUPPORT
967  hex2mem ((unsigned char *)&reg_g, &remcomInBuffer[1], sizeof(registers));
968  if (current_thread_g == executing_task) {
969  copy_registers (&reg, &reg_g, sizeof(registers));
970  }
971  else {
972  copy_registers_to_stack(current_thread_g, &reg_g);
973  }
974 #else
975  hex2mem((char *)&reg, &remcomInBuffer[1], sizeof(registers));
976 #endif
977  gdb_cris_strcpy (remcomOutBuffer, "OK");
978  break;
979 
980  case 'P':
981  /* Write register. Pn...=r...
982  Write register n..., hex value without 0x, with value r...,
983  which contains a hex value without 0x and two hex digits
984  for each byte in the register (target byte order). P1f=11223344 means
985  set register 31 to 44332211.
986  Success: OK
987  Failure: E02, E05 */
988  {
989  char *suffix;
990  int regno = gdb_cris_strtol (&remcomInBuffer[1], &suffix, 16);
991  int status;
992 #ifdef PROCESS_SUPPORT
993  if (current_thread_g != executing_task)
994  status = write_stack_register (current_thread_g, regno, suffix+1);
995  else
996 #endif
997  status = write_register (regno, suffix+1);
998 
999  switch (status) {
1000  case E02:
1001  /* Do not support read-only registers. */
1002  gdb_cris_strcpy (remcomOutBuffer, error_message[E02]);
1003  break;
1004  case E05:
1005  /* Do not support non-existing registers. */
1006  gdb_cris_strcpy (remcomOutBuffer, error_message[E05]);
1007  break;
1008  case E07:
1009  /* Do not support non-existing registers on the stack. */
1010  gdb_cris_strcpy (remcomOutBuffer, error_message[E07]);
1011  break;
1012  default:
1013  /* Valid register number. */
1014  gdb_cris_strcpy (remcomOutBuffer, "OK");
1015  break;
1016  }
1017  }
1018  break;
1019 
1020  case 'm':
1021  /* Read from memory. mAA..AA,LLLL
1022  AA..AA is the address and LLLL is the length.
1023  Success: XX..XX is the memory content. Can be fewer bytes than
1024  requested if only part of the data may be read. m6000120a,6c means
1025  retrieve 108 byte from base address 6000120a.
1026  Failure: void. */
1027  {
1028  char *suffix;
1029  unsigned char *addr = (unsigned char *)gdb_cris_strtol(&remcomInBuffer[1],
1030  &suffix, 16); int length = gdb_cris_strtol(suffix+1, 0, 16);
1031 
1032  mem2hex(remcomOutBuffer, addr, length);
1033  }
1034  break;
1035 
1036  case 'X':
1037  /* Write to memory. XAA..AA,LLLL:XX..XX
1038  AA..AA is the start address, LLLL is the number of bytes, and
1039  XX..XX is the binary data.
1040  Success: OK
1041  Failure: void. */
1042  case 'M':
1043  /* Write to memory. MAA..AA,LLLL:XX..XX
1044  AA..AA is the start address, LLLL is the number of bytes, and
1045  XX..XX is the hexadecimal data.
1046  Success: OK
1047  Failure: void. */
1048  {
1049  char *lenptr;
1050  char *dataptr;
1051  unsigned char *addr = (unsigned char *)gdb_cris_strtol(&remcomInBuffer[1],
1052  &lenptr, 16);
1053  int length = gdb_cris_strtol(lenptr+1, &dataptr, 16);
1054  if (*lenptr == ',' && *dataptr == ':') {
1055  if (remcomInBuffer[0] == 'M') {
1056  hex2mem(addr, dataptr + 1, length);
1057  }
1058  else /* X */ {
1059  bin2mem(addr, dataptr + 1, length);
1060  }
1061  gdb_cris_strcpy (remcomOutBuffer, "OK");
1062  }
1063  else {
1064  gdb_cris_strcpy (remcomOutBuffer, error_message[E06]);
1065  }
1066  }
1067  break;
1068 
1069  case 'c':
1070  /* Continue execution. cAA..AA
1071  AA..AA is the address where execution is resumed. If AA..AA is
1072  omitted, resume at the present address.
1073  Success: return to the executing thread.
1074  Failure: will never know. */
1075  if (remcomInBuffer[1] != '\0') {
1076  reg.pc = gdb_cris_strtol (&remcomInBuffer[1], 0, 16);
1077  }
1078  enableDebugIRQ();
1079  return;
1080 
1081  case 's':
1082  /* Step. sAA..AA
1083  AA..AA is the address where execution is resumed. If AA..AA is
1084  omitted, resume at the present address. Success: return to the
1085  executing thread. Failure: will never know.
1086 
1087  Should never be invoked. The single-step is implemented on
1088  the host side. If ever invoked, it is an internal error E04. */
1089  gdb_cris_strcpy (remcomOutBuffer, error_message[E04]);
1090  putpacket (remcomOutBuffer);
1091  return;
1092 
1093  case '?':
1094  /* The last signal which caused a stop. ?
1095  Success: SAA, where AA is the signal number.
1096  Failure: void. */
1097  remcomOutBuffer[0] = 'S';
1098  remcomOutBuffer[1] = hex_asc_hi(sigval);
1099  remcomOutBuffer[2] = hex_asc_lo(sigval);
1100  remcomOutBuffer[3] = 0;
1101  break;
1102 
1103  case 'D':
1104  /* Detach from host. D
1105  Success: OK, and return to the executing thread.
1106  Failure: will never know */
1107  putpacket ("OK");
1108  return;
1109 
1110  case 'k':
1111  case 'r':
1112  /* kill request or reset request.
1113  Success: restart of target.
1114  Failure: will never know. */
1115  kill_restart ();
1116  break;
1117 
1118  case 'C':
1119  case 'S':
1120  case '!':
1121  case 'R':
1122  case 'd':
1123  /* Continue with signal sig. Csig;AA..AA
1124  Step with signal sig. Ssig;AA..AA
1125  Use the extended remote protocol. !
1126  Restart the target system. R0
1127  Toggle debug flag. d
1128  Search backwards. tAA:PP,MM
1129  Not supported: E04 */
1130  gdb_cris_strcpy (remcomOutBuffer, error_message[E04]);
1131  break;
1132 #ifdef PROCESS_SUPPORT
1133 
1134  case 'T':
1135  /* Thread alive. TXX
1136  Is thread XX alive?
1137  Success: OK, thread XX is alive.
1138  Failure: E03, thread XX is dead. */
1139  {
1140  int thread_id = (int)gdb_cris_strtol (&remcomInBuffer[1], 0, 16);
1141  /* Cannot tell whether it is alive or not. */
1142  if (thread_id >= 0 && thread_id < number_of_tasks)
1143  gdb_cris_strcpy (remcomOutBuffer, "OK");
1144  }
1145  break;
1146 
1147  case 'H':
1148  /* Set thread for subsequent operations: Hct
1149  c = 'c' for thread used in step and continue;
1150  t can be -1 for all threads.
1151  c = 'g' for thread used in other operations.
1152  t = 0 means pick any thread.
1153  Success: OK
1154  Failure: E01 */
1155  {
1156  int thread_id = gdb_cris_strtol (&remcomInBuffer[2], 0, 16);
1157  if (remcomInBuffer[1] == 'c') {
1158  /* c = 'c' for thread used in step and continue */
1159  /* Do not change current_thread_c here. It would create a mess in
1160  the scheduler. */
1161  gdb_cris_strcpy (remcomOutBuffer, "OK");
1162  }
1163  else if (remcomInBuffer[1] == 'g') {
1164  /* c = 'g' for thread used in other operations.
1165  t = 0 means pick any thread. Impossible since the scheduler does
1166  not allow that. */
1167  if (thread_id >= 0 && thread_id < number_of_tasks) {
1168  current_thread_g = thread_id;
1169  gdb_cris_strcpy (remcomOutBuffer, "OK");
1170  }
1171  else {
1172  /* Not expected - send an error message. */
1173  gdb_cris_strcpy (remcomOutBuffer, error_message[E01]);
1174  }
1175  }
1176  else {
1177  /* Not expected - send an error message. */
1178  gdb_cris_strcpy (remcomOutBuffer, error_message[E01]);
1179  }
1180  }
1181  break;
1182 
1183  case 'q':
1184  case 'Q':
1185  /* Query of general interest. qXXXX
1186  Set general value XXXX. QXXXX=yyyy */
1187  {
1188  int pos;
1189  int nextpos;
1190  int thread_id;
1191 
1192  switch (remcomInBuffer[1]) {
1193  case 'C':
1194  /* Identify the remote current thread. */
1195  gdb_cris_strcpy (&remcomOutBuffer[0], "QC");
1196  remcomOutBuffer[2] = hex_asc_hi(current_thread_c);
1197  remcomOutBuffer[3] = hex_asc_lo(current_thread_c);
1198  remcomOutBuffer[4] = '\0';
1199  break;
1200  case 'L':
1201  gdb_cris_strcpy (&remcomOutBuffer[0], "QM");
1202  /* Reply with number of threads. */
1203  if (os_is_started()) {
1204  remcomOutBuffer[2] = hex_asc_hi(number_of_tasks);
1205  remcomOutBuffer[3] = hex_asc_lo(number_of_tasks);
1206  }
1207  else {
1208  remcomOutBuffer[2] = hex_asc_hi(0);
1209  remcomOutBuffer[3] = hex_asc_lo(1);
1210  }
1211  /* Done with the reply. */
1212  remcomOutBuffer[4] = hex_asc_lo(1);
1213  pos = 5;
1214  /* Expects the argument thread id. */
1215  for (; pos < (5 + HEXCHARS_IN_THREAD_ID); pos++)
1216  remcomOutBuffer[pos] = remcomInBuffer[pos];
1217  /* Reply with the thread identifiers. */
1218  if (os_is_started()) {
1219  /* Store the thread identifiers of all tasks. */
1220  for (thread_id = 0; thread_id < number_of_tasks; thread_id++) {
1221  nextpos = pos + HEXCHARS_IN_THREAD_ID - 1;
1222  for (; pos < nextpos; pos ++)
1223  remcomOutBuffer[pos] = hex_asc_lo(0);
1224  remcomOutBuffer[pos++] = hex_asc_lo(thread_id);
1225  }
1226  }
1227  else {
1228  /* Store the thread identifier of the boot task. */
1229  nextpos = pos + HEXCHARS_IN_THREAD_ID - 1;
1230  for (; pos < nextpos; pos ++)
1231  remcomOutBuffer[pos] = hex_asc_lo(0);
1232  remcomOutBuffer[pos++] = hex_asc_lo(current_thread_c);
1233  }
1234  remcomOutBuffer[pos] = '\0';
1235  break;
1236  default:
1237  /* Not supported: "" */
1238  /* Request information about section offsets: qOffsets. */
1239  remcomOutBuffer[0] = 0;
1240  break;
1241  }
1242  }
1243  break;
1244 #endif /* PROCESS_SUPPORT */
1245 
1246  default:
1247  /* The stub should ignore other request and send an empty
1248  response ($#<checksum>). This way we can extend the protocol and GDB
1249  can tell whether the stub it is talking to uses the old or the new. */
1250  remcomOutBuffer[0] = 0;
1251  break;
1252  }
1253  putpacket(remcomOutBuffer);
1254  }
1255 }
1256 
1257 /* Performs a complete re-start from scratch. */
1258 static void
1259 kill_restart ()
1260 {
1261  machine_restart("");
1262 }
1263 
1264 /********************************** Breakpoint *******************************/
1265 /* The hook for both a static (compiled) and a dynamic breakpoint set by GDB.
1266  An internal stack is used by the stub. The register image of the caller is
1267  stored in the structure register_image.
1268  Interactive communication with the host is handled by handle_exception and
1269  finally the register image is restored. */
1270 
1271 void kgdb_handle_breakpoint(void);
1272 
1273 asm ("
1274  .global kgdb_handle_breakpoint
1275 kgdb_handle_breakpoint:
1276 ;;
1277 ;; Response to the break-instruction
1278 ;;
1279 ;; Create a register image of the caller
1280 ;;
1281  move $dccr,[reg+0x5E] ; Save the flags in DCCR before disable interrupts
1282  di ; Disable interrupts
1283  move.d $r0,[reg] ; Save R0
1284  move.d $r1,[reg+0x04] ; Save R1
1285  move.d $r2,[reg+0x08] ; Save R2
1286  move.d $r3,[reg+0x0C] ; Save R3
1287  move.d $r4,[reg+0x10] ; Save R4
1288  move.d $r5,[reg+0x14] ; Save R5
1289  move.d $r6,[reg+0x18] ; Save R6
1290  move.d $r7,[reg+0x1C] ; Save R7
1291  move.d $r8,[reg+0x20] ; Save R8
1292  move.d $r9,[reg+0x24] ; Save R9
1293  move.d $r10,[reg+0x28] ; Save R10
1294  move.d $r11,[reg+0x2C] ; Save R11
1295  move.d $r12,[reg+0x30] ; Save R12
1296  move.d $r13,[reg+0x34] ; Save R13
1297  move.d $sp,[reg+0x38] ; Save SP (R14)
1298 ;; Due to the old assembler-versions BRP might not be recognized
1299  .word 0xE670 ; move brp,$r0
1300  subq 2,$r0 ; Set to address of previous instruction.
1301  move.d $r0,[reg+0x3c] ; Save the address in PC (R15)
1302  clear.b [reg+0x40] ; Clear P0
1303  move $vr,[reg+0x41] ; Save special register P1
1304  clear.w [reg+0x42] ; Clear P4
1305  move $ccr,[reg+0x44] ; Save special register CCR
1306  move $mof,[reg+0x46] ; P7
1307  clear.d [reg+0x4A] ; Clear P8
1308  move $ibr,[reg+0x4E] ; P9,
1309  move $irp,[reg+0x52] ; P10,
1310  move $srp,[reg+0x56] ; P11,
1311  move $dtp0,[reg+0x5A] ; P12, register BAR, assembler might not know BAR
1312  ; P13, register DCCR already saved
1313 ;; Due to the old assembler-versions BRP might not be recognized
1314  .word 0xE670 ; move brp,r0
1315 ;; Static (compiled) breakpoints must return to the next instruction in order
1316 ;; to avoid infinite loops. Dynamic (gdb-invoked) must restore the instruction
1317 ;; in order to execute it when execution is continued.
1318  test.b [is_dyn_brkp] ; Is this a dynamic breakpoint?
1319  beq is_static ; No, a static breakpoint
1320  nop
1321  subq 2,$r0 ; rerun the instruction the break replaced
1322 is_static:
1323  moveq 1,$r1
1324  move.b $r1,[is_dyn_brkp] ; Set the state variable to dynamic breakpoint
1325  move.d $r0,[reg+0x62] ; Save the return address in BRP
1326  move $usp,[reg+0x66] ; USP
1327 ;;
1328 ;; Handle the communication
1329 ;;
1330  move.d internal_stack+1020,$sp ; Use the internal stack which grows upward
1331  moveq 5,$r10 ; SIGTRAP
1332  jsr handle_exception ; Interactive routine
1333 ;;
1334 ;; Return to the caller
1335 ;;
1336  move.d [reg],$r0 ; Restore R0
1337  move.d [reg+0x04],$r1 ; Restore R1
1338  move.d [reg+0x08],$r2 ; Restore R2
1339  move.d [reg+0x0C],$r3 ; Restore R3
1340  move.d [reg+0x10],$r4 ; Restore R4
1341  move.d [reg+0x14],$r5 ; Restore R5
1342  move.d [reg+0x18],$r6 ; Restore R6
1343  move.d [reg+0x1C],$r7 ; Restore R7
1344  move.d [reg+0x20],$r8 ; Restore R8
1345  move.d [reg+0x24],$r9 ; Restore R9
1346  move.d [reg+0x28],$r10 ; Restore R10
1347  move.d [reg+0x2C],$r11 ; Restore R11
1348  move.d [reg+0x30],$r12 ; Restore R12
1349  move.d [reg+0x34],$r13 ; Restore R13
1350 ;;
1351 ;; FIXME: Which registers should be restored?
1352 ;;
1353  move.d [reg+0x38],$sp ; Restore SP (R14)
1354  move [reg+0x56],$srp ; Restore the subroutine return pointer.
1355  move [reg+0x5E],$dccr ; Restore DCCR
1356  move [reg+0x66],$usp ; Restore USP
1357  jump [reg+0x62] ; A jump to the content in register BRP works.
1358  nop ;
1359 ");
1360 
1361 /* The hook for an interrupt generated by GDB. An internal stack is used
1362  by the stub. The register image of the caller is stored in the structure
1363  register_image. Interactive communication with the host is handled by
1364  handle_exception and finally the register image is restored. Due to the
1365  old assembler which does not recognise the break instruction and the
1366  breakpoint return pointer hex-code is used. */
1367 
1368 void kgdb_handle_serial(void);
1369 
1370 asm ("
1371  .global kgdb_handle_serial
1372 kgdb_handle_serial:
1373 ;;
1374 ;; Response to a serial interrupt
1375 ;;
1376 
1377  move $dccr,[reg+0x5E] ; Save the flags in DCCR
1378  di ; Disable interrupts
1379  move.d $r0,[reg] ; Save R0
1380  move.d $r1,[reg+0x04] ; Save R1
1381  move.d $r2,[reg+0x08] ; Save R2
1382  move.d $r3,[reg+0x0C] ; Save R3
1383  move.d $r4,[reg+0x10] ; Save R4
1384  move.d $r5,[reg+0x14] ; Save R5
1385  move.d $r6,[reg+0x18] ; Save R6
1386  move.d $r7,[reg+0x1C] ; Save R7
1387  move.d $r8,[reg+0x20] ; Save R8
1388  move.d $r9,[reg+0x24] ; Save R9
1389  move.d $r10,[reg+0x28] ; Save R10
1390  move.d $r11,[reg+0x2C] ; Save R11
1391  move.d $r12,[reg+0x30] ; Save R12
1392  move.d $r13,[reg+0x34] ; Save R13
1393  move.d $sp,[reg+0x38] ; Save SP (R14)
1394  move $irp,[reg+0x3c] ; Save the address in PC (R15)
1395  clear.b [reg+0x40] ; Clear P0
1396  move $vr,[reg+0x41] ; Save special register P1,
1397  clear.w [reg+0x42] ; Clear P4
1398  move $ccr,[reg+0x44] ; Save special register CCR
1399  move $mof,[reg+0x46] ; P7
1400  clear.d [reg+0x4A] ; Clear P8
1401  move $ibr,[reg+0x4E] ; P9,
1402  move $irp,[reg+0x52] ; P10,
1403  move $srp,[reg+0x56] ; P11,
1404  move $dtp0,[reg+0x5A] ; P12, register BAR, assembler might not know BAR
1405  ; P13, register DCCR already saved
1406 ;; Due to the old assembler-versions BRP might not be recognized
1407  .word 0xE670 ; move brp,r0
1408  move.d $r0,[reg+0x62] ; Save the return address in BRP
1409  move $usp,[reg+0x66] ; USP
1410 
1411 ;; get the serial character (from debugport.c) and check if it is a ctrl-c
1412 
1413  jsr getDebugChar
1414  cmp.b 3, $r10
1415  bne goback
1416  nop
1417 
1418  move.d [reg+0x5E], $r10 ; Get DCCR
1419  btstq 8, $r10 ; Test the U-flag.
1420  bmi goback
1421  nop
1422 
1423 ;;
1424 ;; Handle the communication
1425 ;;
1426  move.d internal_stack+1020,$sp ; Use the internal stack
1427  moveq 2,$r10 ; SIGINT
1428  jsr handle_exception ; Interactive routine
1429 
1430 goback:
1431 ;;
1432 ;; Return to the caller
1433 ;;
1434  move.d [reg],$r0 ; Restore R0
1435  move.d [reg+0x04],$r1 ; Restore R1
1436  move.d [reg+0x08],$r2 ; Restore R2
1437  move.d [reg+0x0C],$r3 ; Restore R3
1438  move.d [reg+0x10],$r4 ; Restore R4
1439  move.d [reg+0x14],$r5 ; Restore R5
1440  move.d [reg+0x18],$r6 ; Restore R6
1441  move.d [reg+0x1C],$r7 ; Restore R7
1442  move.d [reg+0x20],$r8 ; Restore R8
1443  move.d [reg+0x24],$r9 ; Restore R9
1444  move.d [reg+0x28],$r10 ; Restore R10
1445  move.d [reg+0x2C],$r11 ; Restore R11
1446  move.d [reg+0x30],$r12 ; Restore R12
1447  move.d [reg+0x34],$r13 ; Restore R13
1448 ;;
1449 ;; FIXME: Which registers should be restored?
1450 ;;
1451  move.d [reg+0x38],$sp ; Restore SP (R14)
1452  move [reg+0x56],$srp ; Restore the subroutine return pointer.
1453  move [reg+0x5E],$dccr ; Restore DCCR
1454  move [reg+0x66],$usp ; Restore USP
1455  reti ; Return from the interrupt routine
1456  nop
1457 ");
1458 
1459 /* Use this static breakpoint in the start-up only. */
1460 
1461 void
1463 {
1464  kgdb_started = 1;
1465  is_dyn_brkp = 0; /* This is a static, not a dynamic breakpoint. */
1466  __asm__ volatile ("break 8"); /* Jump to handle_breakpoint. */
1467 }
1468 
1469 /* initialize kgdb. doesn't break into the debugger, but sets up irq and ports */
1470 
1471 void
1473 {
1474  /* could initialize debug port as well but it's done in head.S already... */
1475 
1476  /* breakpoint handler is now set in irq.c */
1478 
1479  enableDebugIRQ();
1480 }
1481 
1482 /****************************** End of file **********************************/