Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
diskonchip.c
Go to the documentation of this file.
1 /*
2  * drivers/mtd/nand/diskonchip.c
3  *
4  * (C) 2003 Red Hat, Inc.
5  * (C) 2004 Dan Brown <[email protected]>
6  * (C) 2004 Kalev Lember <[email protected]>
7  *
8  * Author: David Woodhouse <[email protected]>
9  * Additional Diskonchip 2000 and Millennium support by Dan Brown <[email protected]>
10  * Diskonchip Millennium Plus support by Kalev Lember <[email protected]>
11  *
12  * Error correction code lifted from the old docecc code
13  * Author: Fabrice Bellard ([email protected])
14  * Copyright (C) 2000 Netgem S.A.
15  * converted to the generic Reed-Solomon library by Thomas Gleixner <[email protected]>
16  *
17  * Interface to generic NAND code for M-Systems DiskOnChip devices
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/sched.h>
23 #include <linux/delay.h>
24 #include <linux/rslib.h>
25 #include <linux/moduleparam.h>
26 #include <linux/slab.h>
27 #include <asm/io.h>
28 
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/nand.h>
31 #include <linux/mtd/doc2000.h>
32 #include <linux/mtd/partitions.h>
33 #include <linux/mtd/inftl.h>
34 #include <linux/module.h>
35 
36 /* Where to look for the devices? */
37 #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
38 #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
39 #endif
40 
41 static unsigned long __initdata doc_locations[] = {
42 #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
43 #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
44  0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
45  0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
46  0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
47  0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
48  0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
49 #else /* CONFIG_MTD_DOCPROBE_HIGH */
50  0xc8000, 0xca000, 0xcc000, 0xce000,
51  0xd0000, 0xd2000, 0xd4000, 0xd6000,
52  0xd8000, 0xda000, 0xdc000, 0xde000,
53  0xe0000, 0xe2000, 0xe4000, 0xe6000,
54  0xe8000, 0xea000, 0xec000, 0xee000,
55 #endif /* CONFIG_MTD_DOCPROBE_HIGH */
56 #else
57 #warning Unknown architecture for DiskOnChip. No default probe locations defined
58 #endif
59  0xffffffff };
60 
61 static struct mtd_info *doclist = NULL;
62 
63 struct doc_priv {
65  unsigned long physadr;
68  int chips_per_floor; /* The number of chips detected on each floor */
69  int curfloor;
70  int curchip;
71  int mh0_page;
72  int mh1_page;
73  struct mtd_info *nextdoc;
74 };
75 
76 /* This is the syndrome computed by the HW ecc generator upon reading an empty
77  page, one with all 0xff for data and stored ecc code. */
78 static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
79 
80 /* This is the ecc value computed by the HW ecc generator upon writing an empty
81  page, one with all 0xff for data. */
82 static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
83 
84 #define INFTL_BBT_RESERVED_BLOCKS 4
85 
86 #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
87 #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
88 #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
89 
90 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
91  unsigned int bitmask);
92 static void doc200x_select_chip(struct mtd_info *mtd, int chip);
93 
94 static int debug = 0;
95 module_param(debug, int, 0);
96 
97 static int try_dword = 1;
98 module_param(try_dword, int, 0);
99 
100 static int no_ecc_failures = 0;
101 module_param(no_ecc_failures, int, 0);
102 
103 static int no_autopart = 0;
104 module_param(no_autopart, int, 0);
105 
106 static int show_firmware_partition = 0;
107 module_param(show_firmware_partition, int, 0);
108 
109 #ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
110 static int inftl_bbt_write = 1;
111 #else
112 static int inftl_bbt_write = 0;
113 #endif
114 module_param(inftl_bbt_write, int, 0);
115 
116 static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
117 module_param(doc_config_location, ulong, 0);
118 MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
119 
120 /* Sector size for HW ECC */
121 #define SECTOR_SIZE 512
122 /* The sector bytes are packed into NB_DATA 10 bit words */
123 #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
124 /* Number of roots */
125 #define NROOTS 4
126 /* First consective root */
127 #define FCR 510
128 /* Number of symbols */
129 #define NN 1023
130 
131 /* the Reed Solomon control structure */
132 static struct rs_control *rs_decoder;
133 
134 /*
135  * The HW decoder in the DoC ASIC's provides us a error syndrome,
136  * which we must convert to a standard syndrome usable by the generic
137  * Reed-Solomon library code.
138  *
139  * Fabrice Bellard figured this out in the old docecc code. I added
140  * some comments, improved a minor bit and converted it to make use
141  * of the generic Reed-Solomon library. tglx
142  */
143 static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
144 {
145  int i, j, nerr, errpos[8];
146  uint8_t parity;
147  uint16_t ds[4], s[5], tmp, errval[8], syn[4];
148 
149  memset(syn, 0, sizeof(syn));
150  /* Convert the ecc bytes into words */
151  ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
152  ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
153  ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
154  ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
155  parity = ecc[1];
156 
157  /* Initialize the syndrome buffer */
158  for (i = 0; i < NROOTS; i++)
159  s[i] = ds[0];
160  /*
161  * Evaluate
162  * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
163  * where x = alpha^(FCR + i)
164  */
165  for (j = 1; j < NROOTS; j++) {
166  if (ds[j] == 0)
167  continue;
168  tmp = rs->index_of[ds[j]];
169  for (i = 0; i < NROOTS; i++)
170  s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
171  }
172 
173  /* Calc syn[i] = s[i] / alpha^(v + i) */
174  for (i = 0; i < NROOTS; i++) {
175  if (s[i])
176  syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
177  }
178  /* Call the decoder library */
179  nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
180 
181  /* Incorrectable errors ? */
182  if (nerr < 0)
183  return nerr;
184 
185  /*
186  * Correct the errors. The bitpositions are a bit of magic,
187  * but they are given by the design of the de/encoder circuit
188  * in the DoC ASIC's.
189  */
190  for (i = 0; i < nerr; i++) {
191  int index, bitpos, pos = 1015 - errpos[i];
192  uint8_t val;
193  if (pos >= NB_DATA && pos < 1019)
194  continue;
195  if (pos < NB_DATA) {
196  /* extract bit position (MSB first) */
197  pos = 10 * (NB_DATA - 1 - pos) - 6;
198  /* now correct the following 10 bits. At most two bytes
199  can be modified since pos is even */
200  index = (pos >> 3) ^ 1;
201  bitpos = pos & 7;
202  if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
203  val = (uint8_t) (errval[i] >> (2 + bitpos));
204  parity ^= val;
205  if (index < SECTOR_SIZE)
206  data[index] ^= val;
207  }
208  index = ((pos >> 3) + 1) ^ 1;
209  bitpos = (bitpos + 10) & 7;
210  if (bitpos == 0)
211  bitpos = 8;
212  if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
213  val = (uint8_t) (errval[i] << (8 - bitpos));
214  parity ^= val;
215  if (index < SECTOR_SIZE)
216  data[index] ^= val;
217  }
218  }
219  }
220  /* If the parity is wrong, no rescue possible */
221  return parity ? -EBADMSG : nerr;
222 }
223 
224 static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
225 {
226  volatile char dummy;
227  int i;
228 
229  for (i = 0; i < cycles; i++) {
230  if (DoC_is_Millennium(doc))
231  dummy = ReadDOC(doc->virtadr, NOP);
232  else if (DoC_is_MillenniumPlus(doc))
233  dummy = ReadDOC(doc->virtadr, Mplus_NOP);
234  else
235  dummy = ReadDOC(doc->virtadr, DOCStatus);
236  }
237 
238 }
239 
240 #define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
241 
242 /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
243 static int _DoC_WaitReady(struct doc_priv *doc)
244 {
245  void __iomem *docptr = doc->virtadr;
246  unsigned long timeo = jiffies + (HZ * 10);
247 
248  if (debug)
249  printk("_DoC_WaitReady...\n");
250  /* Out-of-line routine to wait for chip response */
251  if (DoC_is_MillenniumPlus(doc)) {
252  while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
253  if (time_after(jiffies, timeo)) {
254  printk("_DoC_WaitReady timed out.\n");
255  return -EIO;
256  }
257  udelay(1);
258  cond_resched();
259  }
260  } else {
261  while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
262  if (time_after(jiffies, timeo)) {
263  printk("_DoC_WaitReady timed out.\n");
264  return -EIO;
265  }
266  udelay(1);
267  cond_resched();
268  }
269  }
270 
271  return 0;
272 }
273 
274 static inline int DoC_WaitReady(struct doc_priv *doc)
275 {
276  void __iomem *docptr = doc->virtadr;
277  int ret = 0;
278 
279  if (DoC_is_MillenniumPlus(doc)) {
280  DoC_Delay(doc, 4);
281 
282  if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
283  /* Call the out-of-line routine to wait */
284  ret = _DoC_WaitReady(doc);
285  } else {
286  DoC_Delay(doc, 4);
287 
288  if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
289  /* Call the out-of-line routine to wait */
290  ret = _DoC_WaitReady(doc);
291  DoC_Delay(doc, 2);
292  }
293 
294  if (debug)
295  printk("DoC_WaitReady OK\n");
296  return ret;
297 }
298 
299 static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
300 {
301  struct nand_chip *this = mtd->priv;
302  struct doc_priv *doc = this->priv;
303  void __iomem *docptr = doc->virtadr;
304 
305  if (debug)
306  printk("write_byte %02x\n", datum);
307  WriteDOC(datum, docptr, CDSNSlowIO);
308  WriteDOC(datum, docptr, 2k_CDSN_IO);
309 }
310 
311 static u_char doc2000_read_byte(struct mtd_info *mtd)
312 {
313  struct nand_chip *this = mtd->priv;
314  struct doc_priv *doc = this->priv;
315  void __iomem *docptr = doc->virtadr;
316  u_char ret;
317 
318  ReadDOC(docptr, CDSNSlowIO);
319  DoC_Delay(doc, 2);
320  ret = ReadDOC(docptr, 2k_CDSN_IO);
321  if (debug)
322  printk("read_byte returns %02x\n", ret);
323  return ret;
324 }
325 
326 static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
327 {
328  struct nand_chip *this = mtd->priv;
329  struct doc_priv *doc = this->priv;
330  void __iomem *docptr = doc->virtadr;
331  int i;
332  if (debug)
333  printk("writebuf of %d bytes: ", len);
334  for (i = 0; i < len; i++) {
335  WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
336  if (debug && i < 16)
337  printk("%02x ", buf[i]);
338  }
339  if (debug)
340  printk("\n");
341 }
342 
343 static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len)
344 {
345  struct nand_chip *this = mtd->priv;
346  struct doc_priv *doc = this->priv;
347  void __iomem *docptr = doc->virtadr;
348  int i;
349 
350  if (debug)
351  printk("readbuf of %d bytes: ", len);
352 
353  for (i = 0; i < len; i++) {
354  buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
355  }
356 }
357 
358 static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len)
359 {
360  struct nand_chip *this = mtd->priv;
361  struct doc_priv *doc = this->priv;
362  void __iomem *docptr = doc->virtadr;
363  int i;
364 
365  if (debug)
366  printk("readbuf_dword of %d bytes: ", len);
367 
368  if (unlikely((((unsigned long)buf) | len) & 3)) {
369  for (i = 0; i < len; i++) {
370  *(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
371  }
372  } else {
373  for (i = 0; i < len; i += 4) {
374  *(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
375  }
376  }
377 }
378 
379 static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
380 {
381  struct nand_chip *this = mtd->priv;
382  struct doc_priv *doc = this->priv;
383  uint16_t ret;
384 
385  doc200x_select_chip(mtd, nr);
386  doc200x_hwcontrol(mtd, NAND_CMD_READID,
388  doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
389  doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
390 
391  /* We can't use dev_ready here, but at least we wait for the
392  * command to complete
393  */
394  udelay(50);
395 
396  ret = this->read_byte(mtd) << 8;
397  ret |= this->read_byte(mtd);
398 
399  if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
400  /* First chip probe. See if we get same results by 32-bit access */
401  union {
402  uint32_t dword;
403  uint8_t byte[4];
404  } ident;
405  void __iomem *docptr = doc->virtadr;
406 
407  doc200x_hwcontrol(mtd, NAND_CMD_READID,
409  doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
410  doc200x_hwcontrol(mtd, NAND_CMD_NONE,
412 
413  udelay(50);
414 
415  ident.dword = readl(docptr + DoC_2k_CDSN_IO);
416  if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
417  printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
418  this->read_buf = &doc2000_readbuf_dword;
419  }
420  }
421 
422  return ret;
423 }
424 
425 static void __init doc2000_count_chips(struct mtd_info *mtd)
426 {
427  struct nand_chip *this = mtd->priv;
428  struct doc_priv *doc = this->priv;
429  uint16_t mfrid;
430  int i;
431 
432  /* Max 4 chips per floor on DiskOnChip 2000 */
433  doc->chips_per_floor = 4;
434 
435  /* Find out what the first chip is */
436  mfrid = doc200x_ident_chip(mtd, 0);
437 
438  /* Find how many chips in each floor. */
439  for (i = 1; i < 4; i++) {
440  if (doc200x_ident_chip(mtd, i) != mfrid)
441  break;
442  }
443  doc->chips_per_floor = i;
444  printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
445 }
446 
447 static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this)
448 {
449  struct doc_priv *doc = this->priv;
450 
451  int status;
452 
453  DoC_WaitReady(doc);
454  this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
455  DoC_WaitReady(doc);
456  status = (int)this->read_byte(mtd);
457 
458  return status;
459 }
460 
461 static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
462 {
463  struct nand_chip *this = mtd->priv;
464  struct doc_priv *doc = this->priv;
465  void __iomem *docptr = doc->virtadr;
466 
467  WriteDOC(datum, docptr, CDSNSlowIO);
468  WriteDOC(datum, docptr, Mil_CDSN_IO);
469  WriteDOC(datum, docptr, WritePipeTerm);
470 }
471 
472 static u_char doc2001_read_byte(struct mtd_info *mtd)
473 {
474  struct nand_chip *this = mtd->priv;
475  struct doc_priv *doc = this->priv;
476  void __iomem *docptr = doc->virtadr;
477 
478  //ReadDOC(docptr, CDSNSlowIO);
479  /* 11.4.5 -- delay twice to allow extended length cycle */
480  DoC_Delay(doc, 2);
481  ReadDOC(docptr, ReadPipeInit);
482  //return ReadDOC(docptr, Mil_CDSN_IO);
483  return ReadDOC(docptr, LastDataRead);
484 }
485 
486 static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
487 {
488  struct nand_chip *this = mtd->priv;
489  struct doc_priv *doc = this->priv;
490  void __iomem *docptr = doc->virtadr;
491  int i;
492 
493  for (i = 0; i < len; i++)
494  WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
495  /* Terminate write pipeline */
496  WriteDOC(0x00, docptr, WritePipeTerm);
497 }
498 
499 static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len)
500 {
501  struct nand_chip *this = mtd->priv;
502  struct doc_priv *doc = this->priv;
503  void __iomem *docptr = doc->virtadr;
504  int i;
505 
506  /* Start read pipeline */
507  ReadDOC(docptr, ReadPipeInit);
508 
509  for (i = 0; i < len - 1; i++)
510  buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
511 
512  /* Terminate read pipeline */
513  buf[i] = ReadDOC(docptr, LastDataRead);
514 }
515 
516 static u_char doc2001plus_read_byte(struct mtd_info *mtd)
517 {
518  struct nand_chip *this = mtd->priv;
519  struct doc_priv *doc = this->priv;
520  void __iomem *docptr = doc->virtadr;
521  u_char ret;
522 
523  ReadDOC(docptr, Mplus_ReadPipeInit);
524  ReadDOC(docptr, Mplus_ReadPipeInit);
525  ret = ReadDOC(docptr, Mplus_LastDataRead);
526  if (debug)
527  printk("read_byte returns %02x\n", ret);
528  return ret;
529 }
530 
531 static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
532 {
533  struct nand_chip *this = mtd->priv;
534  struct doc_priv *doc = this->priv;
535  void __iomem *docptr = doc->virtadr;
536  int i;
537 
538  if (debug)
539  printk("writebuf of %d bytes: ", len);
540  for (i = 0; i < len; i++) {
541  WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
542  if (debug && i < 16)
543  printk("%02x ", buf[i]);
544  }
545  if (debug)
546  printk("\n");
547 }
548 
549 static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len)
550 {
551  struct nand_chip *this = mtd->priv;
552  struct doc_priv *doc = this->priv;
553  void __iomem *docptr = doc->virtadr;
554  int i;
555 
556  if (debug)
557  printk("readbuf of %d bytes: ", len);
558 
559  /* Start read pipeline */
560  ReadDOC(docptr, Mplus_ReadPipeInit);
561  ReadDOC(docptr, Mplus_ReadPipeInit);
562 
563  for (i = 0; i < len - 2; i++) {
564  buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
565  if (debug && i < 16)
566  printk("%02x ", buf[i]);
567  }
568 
569  /* Terminate read pipeline */
570  buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
571  if (debug && i < 16)
572  printk("%02x ", buf[len - 2]);
573  buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
574  if (debug && i < 16)
575  printk("%02x ", buf[len - 1]);
576  if (debug)
577  printk("\n");
578 }
579 
580 static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
581 {
582  struct nand_chip *this = mtd->priv;
583  struct doc_priv *doc = this->priv;
584  void __iomem *docptr = doc->virtadr;
585  int floor = 0;
586 
587  if (debug)
588  printk("select chip (%d)\n", chip);
589 
590  if (chip == -1) {
591  /* Disable flash internally */
592  WriteDOC(0, docptr, Mplus_FlashSelect);
593  return;
594  }
595 
596  floor = chip / doc->chips_per_floor;
597  chip -= (floor * doc->chips_per_floor);
598 
599  /* Assert ChipEnable and deassert WriteProtect */
600  WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
601  this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
602 
603  doc->curchip = chip;
604  doc->curfloor = floor;
605 }
606 
607 static void doc200x_select_chip(struct mtd_info *mtd, int chip)
608 {
609  struct nand_chip *this = mtd->priv;
610  struct doc_priv *doc = this->priv;
611  void __iomem *docptr = doc->virtadr;
612  int floor = 0;
613 
614  if (debug)
615  printk("select chip (%d)\n", chip);
616 
617  if (chip == -1)
618  return;
619 
620  floor = chip / doc->chips_per_floor;
621  chip -= (floor * doc->chips_per_floor);
622 
623  /* 11.4.4 -- deassert CE before changing chip */
624  doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
625 
626  WriteDOC(floor, docptr, FloorSelect);
627  WriteDOC(chip, docptr, CDSNDeviceSelect);
628 
629  doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
630 
631  doc->curchip = chip;
632  doc->curfloor = floor;
633 }
634 
635 #define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
636 
637 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
638  unsigned int ctrl)
639 {
640  struct nand_chip *this = mtd->priv;
641  struct doc_priv *doc = this->priv;
642  void __iomem *docptr = doc->virtadr;
643 
644  if (ctrl & NAND_CTRL_CHANGE) {
645  doc->CDSNControl &= ~CDSN_CTRL_MSK;
646  doc->CDSNControl |= ctrl & CDSN_CTRL_MSK;
647  if (debug)
648  printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
649  WriteDOC(doc->CDSNControl, docptr, CDSNControl);
650  /* 11.4.3 -- 4 NOPs after CSDNControl write */
651  DoC_Delay(doc, 4);
652  }
653  if (cmd != NAND_CMD_NONE) {
654  if (DoC_is_2000(doc))
655  doc2000_write_byte(mtd, cmd);
656  else
657  doc2001_write_byte(mtd, cmd);
658  }
659 }
660 
661 static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
662 {
663  struct nand_chip *this = mtd->priv;
664  struct doc_priv *doc = this->priv;
665  void __iomem *docptr = doc->virtadr;
666 
667  /*
668  * Must terminate write pipeline before sending any commands
669  * to the device.
670  */
671  if (command == NAND_CMD_PAGEPROG) {
672  WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
673  WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
674  }
675 
676  /*
677  * Write out the command to the device.
678  */
679  if (command == NAND_CMD_SEQIN) {
680  int readcmd;
681 
682  if (column >= mtd->writesize) {
683  /* OOB area */
684  column -= mtd->writesize;
685  readcmd = NAND_CMD_READOOB;
686  } else if (column < 256) {
687  /* First 256 bytes --> READ0 */
688  readcmd = NAND_CMD_READ0;
689  } else {
690  column -= 256;
691  readcmd = NAND_CMD_READ1;
692  }
693  WriteDOC(readcmd, docptr, Mplus_FlashCmd);
694  }
695  WriteDOC(command, docptr, Mplus_FlashCmd);
696  WriteDOC(0, docptr, Mplus_WritePipeTerm);
697  WriteDOC(0, docptr, Mplus_WritePipeTerm);
698 
699  if (column != -1 || page_addr != -1) {
700  /* Serially input address */
701  if (column != -1) {
702  /* Adjust columns for 16 bit buswidth */
703  if (this->options & NAND_BUSWIDTH_16)
704  column >>= 1;
705  WriteDOC(column, docptr, Mplus_FlashAddress);
706  }
707  if (page_addr != -1) {
708  WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress);
709  WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
710  /* One more address cycle for higher density devices */
711  if (this->chipsize & 0x0c000000) {
712  WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
713  printk("high density\n");
714  }
715  }
716  WriteDOC(0, docptr, Mplus_WritePipeTerm);
717  WriteDOC(0, docptr, Mplus_WritePipeTerm);
718  /* deassert ALE */
719  if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
720  command == NAND_CMD_READOOB || command == NAND_CMD_READID)
721  WriteDOC(0, docptr, Mplus_FlashControl);
722  }
723 
724  /*
725  * program and erase have their own busy handlers
726  * status and sequential in needs no delay
727  */
728  switch (command) {
729 
730  case NAND_CMD_PAGEPROG:
731  case NAND_CMD_ERASE1:
732  case NAND_CMD_ERASE2:
733  case NAND_CMD_SEQIN:
734  case NAND_CMD_STATUS:
735  return;
736 
737  case NAND_CMD_RESET:
738  if (this->dev_ready)
739  break;
740  udelay(this->chip_delay);
741  WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
742  WriteDOC(0, docptr, Mplus_WritePipeTerm);
743  WriteDOC(0, docptr, Mplus_WritePipeTerm);
744  while (!(this->read_byte(mtd) & 0x40)) ;
745  return;
746 
747  /* This applies to read commands */
748  default:
749  /*
750  * If we don't have access to the busy pin, we apply the given
751  * command delay
752  */
753  if (!this->dev_ready) {
754  udelay(this->chip_delay);
755  return;
756  }
757  }
758 
759  /* Apply this short delay always to ensure that we do wait tWB in
760  * any case on any machine. */
761  ndelay(100);
762  /* wait until command is processed */
763  while (!this->dev_ready(mtd)) ;
764 }
765 
766 static int doc200x_dev_ready(struct mtd_info *mtd)
767 {
768  struct nand_chip *this = mtd->priv;
769  struct doc_priv *doc = this->priv;
770  void __iomem *docptr = doc->virtadr;
771 
772  if (DoC_is_MillenniumPlus(doc)) {
773  /* 11.4.2 -- must NOP four times before checking FR/B# */
774  DoC_Delay(doc, 4);
775  if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
776  if (debug)
777  printk("not ready\n");
778  return 0;
779  }
780  if (debug)
781  printk("was ready\n");
782  return 1;
783  } else {
784  /* 11.4.2 -- must NOP four times before checking FR/B# */
785  DoC_Delay(doc, 4);
786  if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
787  if (debug)
788  printk("not ready\n");
789  return 0;
790  }
791  /* 11.4.2 -- Must NOP twice if it's ready */
792  DoC_Delay(doc, 2);
793  if (debug)
794  printk("was ready\n");
795  return 1;
796  }
797 }
798 
799 static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
800 {
801  /* This is our last resort if we couldn't find or create a BBT. Just
802  pretend all blocks are good. */
803  return 0;
804 }
805 
806 static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
807 {
808  struct nand_chip *this = mtd->priv;
809  struct doc_priv *doc = this->priv;
810  void __iomem *docptr = doc->virtadr;
811 
812  /* Prime the ECC engine */
813  switch (mode) {
814  case NAND_ECC_READ:
815  WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
816  WriteDOC(DOC_ECC_EN, docptr, ECCConf);
817  break;
818  case NAND_ECC_WRITE:
819  WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
820  WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
821  break;
822  }
823 }
824 
825 static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
826 {
827  struct nand_chip *this = mtd->priv;
828  struct doc_priv *doc = this->priv;
829  void __iomem *docptr = doc->virtadr;
830 
831  /* Prime the ECC engine */
832  switch (mode) {
833  case NAND_ECC_READ:
834  WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
835  WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
836  break;
837  case NAND_ECC_WRITE:
838  WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
839  WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
840  break;
841  }
842 }
843 
844 /* This code is only called on write */
845 static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code)
846 {
847  struct nand_chip *this = mtd->priv;
848  struct doc_priv *doc = this->priv;
849  void __iomem *docptr = doc->virtadr;
850  int i;
851  int emptymatch = 1;
852 
853  /* flush the pipeline */
854  if (DoC_is_2000(doc)) {
856  WriteDOC(0, docptr, 2k_CDSN_IO);
857  WriteDOC(0, docptr, 2k_CDSN_IO);
858  WriteDOC(0, docptr, 2k_CDSN_IO);
859  WriteDOC(doc->CDSNControl, docptr, CDSNControl);
860  } else if (DoC_is_MillenniumPlus(doc)) {
861  WriteDOC(0, docptr, Mplus_NOP);
862  WriteDOC(0, docptr, Mplus_NOP);
863  WriteDOC(0, docptr, Mplus_NOP);
864  } else {
865  WriteDOC(0, docptr, NOP);
866  WriteDOC(0, docptr, NOP);
867  WriteDOC(0, docptr, NOP);
868  }
869 
870  for (i = 0; i < 6; i++) {
871  if (DoC_is_MillenniumPlus(doc))
872  ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
873  else
874  ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
875  if (ecc_code[i] != empty_write_ecc[i])
876  emptymatch = 0;
877  }
878  if (DoC_is_MillenniumPlus(doc))
879  WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
880  else
881  WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
882 #if 0
883  /* If emptymatch=1, we might have an all-0xff data buffer. Check. */
884  if (emptymatch) {
885  /* Note: this somewhat expensive test should not be triggered
886  often. It could be optimized away by examining the data in
887  the writebuf routine, and remembering the result. */
888  for (i = 0; i < 512; i++) {
889  if (dat[i] == 0xff)
890  continue;
891  emptymatch = 0;
892  break;
893  }
894  }
895  /* If emptymatch still =1, we do have an all-0xff data buffer.
896  Return all-0xff ecc value instead of the computed one, so
897  it'll look just like a freshly-erased page. */
898  if (emptymatch)
899  memset(ecc_code, 0xff, 6);
900 #endif
901  return 0;
902 }
903 
904 static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat,
905  u_char *read_ecc, u_char *isnull)
906 {
907  int i, ret = 0;
908  struct nand_chip *this = mtd->priv;
909  struct doc_priv *doc = this->priv;
910  void __iomem *docptr = doc->virtadr;
911  uint8_t calc_ecc[6];
912  volatile u_char dummy;
913  int emptymatch = 1;
914 
915  /* flush the pipeline */
916  if (DoC_is_2000(doc)) {
917  dummy = ReadDOC(docptr, 2k_ECCStatus);
918  dummy = ReadDOC(docptr, 2k_ECCStatus);
919  dummy = ReadDOC(docptr, 2k_ECCStatus);
920  } else if (DoC_is_MillenniumPlus(doc)) {
921  dummy = ReadDOC(docptr, Mplus_ECCConf);
922  dummy = ReadDOC(docptr, Mplus_ECCConf);
923  dummy = ReadDOC(docptr, Mplus_ECCConf);
924  } else {
925  dummy = ReadDOC(docptr, ECCConf);
926  dummy = ReadDOC(docptr, ECCConf);
927  dummy = ReadDOC(docptr, ECCConf);
928  }
929 
930  /* Error occurred ? */
931  if (dummy & 0x80) {
932  for (i = 0; i < 6; i++) {
933  if (DoC_is_MillenniumPlus(doc))
934  calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
935  else
936  calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
937  if (calc_ecc[i] != empty_read_syndrome[i])
938  emptymatch = 0;
939  }
940  /* If emptymatch=1, the read syndrome is consistent with an
941  all-0xff data and stored ecc block. Check the stored ecc. */
942  if (emptymatch) {
943  for (i = 0; i < 6; i++) {
944  if (read_ecc[i] == 0xff)
945  continue;
946  emptymatch = 0;
947  break;
948  }
949  }
950  /* If emptymatch still =1, check the data block. */
951  if (emptymatch) {
952  /* Note: this somewhat expensive test should not be triggered
953  often. It could be optimized away by examining the data in
954  the readbuf routine, and remembering the result. */
955  for (i = 0; i < 512; i++) {
956  if (dat[i] == 0xff)
957  continue;
958  emptymatch = 0;
959  break;
960  }
961  }
962  /* If emptymatch still =1, this is almost certainly a freshly-
963  erased block, in which case the ECC will not come out right.
964  We'll suppress the error and tell the caller everything's
965  OK. Because it is. */
966  if (!emptymatch)
967  ret = doc_ecc_decode(rs_decoder, dat, calc_ecc);
968  if (ret > 0)
969  printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
970  }
971  if (DoC_is_MillenniumPlus(doc))
972  WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
973  else
974  WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
975  if (no_ecc_failures && mtd_is_eccerr(ret)) {
976  printk(KERN_ERR "suppressing ECC failure\n");
977  ret = 0;
978  }
979  return ret;
980 }
981 
982 //u_char mydatabuf[528];
983 
984 /* The strange out-of-order .oobfree list below is a (possibly unneeded)
985  * attempt to retain compatibility. It used to read:
986  * .oobfree = { {8, 8} }
987  * Since that leaves two bytes unusable, it was changed. But the following
988  * scheme might affect existing jffs2 installs by moving the cleanmarker:
989  * .oobfree = { {6, 10} }
990  * jffs2 seems to handle the above gracefully, but the current scheme seems
991  * safer. The only problem with it is that any code that parses oobfree must
992  * be able to handle out-of-order segments.
993  */
994 static struct nand_ecclayout doc200x_oobinfo = {
995  .eccbytes = 6,
996  .eccpos = {0, 1, 2, 3, 4, 5},
997  .oobfree = {{8, 8}, {6, 2}}
998 };
999 
1000 /* Find the (I)NFTL Media Header, and optionally also the mirror media header.
1001  On successful return, buf will contain a copy of the media header for
1002  further processing. id is the string to scan for, and will presumably be
1003  either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media
1004  header. The page #s of the found media headers are placed in mh0_page and
1005  mh1_page in the DOC private structure. */
1006 static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
1007 {
1008  struct nand_chip *this = mtd->priv;
1009  struct doc_priv *doc = this->priv;
1010  unsigned offs;
1011  int ret;
1012  size_t retlen;
1013 
1014  for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
1015  ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
1016  if (retlen != mtd->writesize)
1017  continue;
1018  if (ret) {
1019  printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs);
1020  }
1021  if (memcmp(buf, id, 6))
1022  continue;
1023  printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
1024  if (doc->mh0_page == -1) {
1025  doc->mh0_page = offs >> this->page_shift;
1026  if (!findmirror)
1027  return 1;
1028  continue;
1029  }
1030  doc->mh1_page = offs >> this->page_shift;
1031  return 2;
1032  }
1033  if (doc->mh0_page == -1) {
1034  printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
1035  return 0;
1036  }
1037  /* Only one mediaheader was found. We want buf to contain a
1038  mediaheader on return, so we'll have to re-read the one we found. */
1039  offs = doc->mh0_page << this->page_shift;
1040  ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
1041  if (retlen != mtd->writesize) {
1042  /* Insanity. Give up. */
1043  printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
1044  return 0;
1045  }
1046  return 1;
1047 }
1048 
1049 static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1050 {
1051  struct nand_chip *this = mtd->priv;
1052  struct doc_priv *doc = this->priv;
1053  int ret = 0;
1054  u_char *buf;
1055  struct NFTLMediaHeader *mh;
1056  const unsigned psize = 1 << this->page_shift;
1057  int numparts = 0;
1058  unsigned blocks, maxblocks;
1059  int offs, numheaders;
1060 
1061  buf = kmalloc(mtd->writesize, GFP_KERNEL);
1062  if (!buf) {
1063  printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1064  return 0;
1065  }
1066  if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
1067  goto out;
1068  mh = (struct NFTLMediaHeader *)buf;
1069 
1073 
1074  printk(KERN_INFO " DataOrgID = %s\n"
1075  " NumEraseUnits = %d\n"
1076  " FirstPhysicalEUN = %d\n"
1077  " FormattedSize = %d\n"
1078  " UnitSizeFactor = %d\n",
1079  mh->DataOrgID, mh->NumEraseUnits,
1081  mh->UnitSizeFactor);
1082 
1083  blocks = mtd->size >> this->phys_erase_shift;
1084  maxblocks = min(32768U, mtd->erasesize - psize);
1085 
1086  if (mh->UnitSizeFactor == 0x00) {
1087  /* Auto-determine UnitSizeFactor. The constraints are:
1088  - There can be at most 32768 virtual blocks.
1089  - There can be at most (virtual block size - page size)
1090  virtual blocks (because MediaHeader+BBT must fit in 1).
1091  */
1092  mh->UnitSizeFactor = 0xff;
1093  while (blocks > maxblocks) {
1094  blocks >>= 1;
1095  maxblocks = min(32768U, (maxblocks << 1) + psize);
1096  mh->UnitSizeFactor--;
1097  }
1098  printk(KERN_WARNING "UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
1099  }
1100 
1101  /* NOTE: The lines below modify internal variables of the NAND and MTD
1102  layers; variables with have already been configured by nand_scan.
1103  Unfortunately, we didn't know before this point what these values
1104  should be. Thus, this code is somewhat dependent on the exact
1105  implementation of the NAND layer. */
1106  if (mh->UnitSizeFactor != 0xff) {
1107  this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
1108  mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
1109  printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
1110  blocks = mtd->size >> this->bbt_erase_shift;
1111  maxblocks = min(32768U, mtd->erasesize - psize);
1112  }
1113 
1114  if (blocks > maxblocks) {
1115  printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor);
1116  goto out;
1117  }
1118 
1119  /* Skip past the media headers. */
1120  offs = max(doc->mh0_page, doc->mh1_page);
1121  offs <<= this->page_shift;
1122  offs += mtd->erasesize;
1123 
1124  if (show_firmware_partition == 1) {
1125  parts[0].name = " DiskOnChip Firmware / Media Header partition";
1126  parts[0].offset = 0;
1127  parts[0].size = offs;
1128  numparts = 1;
1129  }
1130 
1131  parts[numparts].name = " DiskOnChip BDTL partition";
1132  parts[numparts].offset = offs;
1133  parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
1134 
1135  offs += parts[numparts].size;
1136  numparts++;
1137 
1138  if (offs < mtd->size) {
1139  parts[numparts].name = " DiskOnChip Remainder partition";
1140  parts[numparts].offset = offs;
1141  parts[numparts].size = mtd->size - offs;
1142  numparts++;
1143  }
1144 
1145  ret = numparts;
1146  out:
1147  kfree(buf);
1148  return ret;
1149 }
1150 
1151 /* This is a stripped-down copy of the code in inftlmount.c */
1152 static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1153 {
1154  struct nand_chip *this = mtd->priv;
1155  struct doc_priv *doc = this->priv;
1156  int ret = 0;
1157  u_char *buf;
1158  struct INFTLMediaHeader *mh;
1159  struct INFTLPartition *ip;
1160  int numparts = 0;
1161  int blocks;
1162  int vshift, lastvunit = 0;
1163  int i;
1164  int end = mtd->size;
1165 
1166  if (inftl_bbt_write)
1167  end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
1168 
1169  buf = kmalloc(mtd->writesize, GFP_KERNEL);
1170  if (!buf) {
1171  printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1172  return 0;
1173  }
1174 
1175  if (!find_media_headers(mtd, buf, "BNAND", 0))
1176  goto out;
1177  doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
1178  mh = (struct INFTLMediaHeader *)buf;
1179 
1184  le32_to_cpus(&mh->FormatFlags);
1185  le32_to_cpus(&mh->PercentUsed);
1186 
1187  printk(KERN_INFO " bootRecordID = %s\n"
1188  " NoOfBootImageBlocks = %d\n"
1189  " NoOfBinaryPartitions = %d\n"
1190  " NoOfBDTLPartitions = %d\n"
1191  " BlockMultiplerBits = %d\n"
1192  " FormatFlgs = %d\n"
1193  " OsakVersion = %d.%d.%d.%d\n"
1194  " PercentUsed = %d\n",
1197  mh->NoOfBDTLPartitions,
1199  ((unsigned char *) &mh->OsakVersion)[0] & 0xf,
1200  ((unsigned char *) &mh->OsakVersion)[1] & 0xf,
1201  ((unsigned char *) &mh->OsakVersion)[2] & 0xf,
1202  ((unsigned char *) &mh->OsakVersion)[3] & 0xf,
1203  mh->PercentUsed);
1204 
1205  vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
1206 
1207  blocks = mtd->size >> vshift;
1208  if (blocks > 32768) {
1209  printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits);
1210  goto out;
1211  }
1212 
1213  blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
1214  if (inftl_bbt_write && (blocks > mtd->erasesize)) {
1215  printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
1216  goto out;
1217  }
1218 
1219  /* Scan the partitions */
1220  for (i = 0; (i < 4); i++) {
1221  ip = &(mh->Partitions[i]);
1222  le32_to_cpus(&ip->virtualUnits);
1223  le32_to_cpus(&ip->firstUnit);
1224  le32_to_cpus(&ip->lastUnit);
1225  le32_to_cpus(&ip->flags);
1226  le32_to_cpus(&ip->spareUnits);
1227  le32_to_cpus(&ip->Reserved0);
1228 
1229  printk(KERN_INFO " PARTITION[%d] ->\n"
1230  " virtualUnits = %d\n"
1231  " firstUnit = %d\n"
1232  " lastUnit = %d\n"
1233  " flags = 0x%x\n"
1234  " spareUnits = %d\n",
1235  i, ip->virtualUnits, ip->firstUnit,
1236  ip->lastUnit, ip->flags,
1237  ip->spareUnits);
1238 
1239  if ((show_firmware_partition == 1) &&
1240  (i == 0) && (ip->firstUnit > 0)) {
1241  parts[0].name = " DiskOnChip IPL / Media Header partition";
1242  parts[0].offset = 0;
1243  parts[0].size = mtd->erasesize * ip->firstUnit;
1244  numparts = 1;
1245  }
1246 
1247  if (ip->flags & INFTL_BINARY)
1248  parts[numparts].name = " DiskOnChip BDK partition";
1249  else
1250  parts[numparts].name = " DiskOnChip BDTL partition";
1251  parts[numparts].offset = ip->firstUnit << vshift;
1252  parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
1253  numparts++;
1254  if (ip->lastUnit > lastvunit)
1255  lastvunit = ip->lastUnit;
1256  if (ip->flags & INFTL_LAST)
1257  break;
1258  }
1259  lastvunit++;
1260  if ((lastvunit << vshift) < end) {
1261  parts[numparts].name = " DiskOnChip Remainder partition";
1262  parts[numparts].offset = lastvunit << vshift;
1263  parts[numparts].size = end - parts[numparts].offset;
1264  numparts++;
1265  }
1266  ret = numparts;
1267  out:
1268  kfree(buf);
1269  return ret;
1270 }
1271 
1272 static int __init nftl_scan_bbt(struct mtd_info *mtd)
1273 {
1274  int ret, numparts;
1275  struct nand_chip *this = mtd->priv;
1276  struct doc_priv *doc = this->priv;
1277  struct mtd_partition parts[2];
1278 
1279  memset((char *)parts, 0, sizeof(parts));
1280  /* On NFTL, we have to find the media headers before we can read the
1281  BBTs, since they're stored in the media header eraseblocks. */
1282  numparts = nftl_partscan(mtd, parts);
1283  if (!numparts)
1284  return -EIO;
1285  this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1288  this->bbt_td->veroffs = 7;
1289  this->bbt_td->pages[0] = doc->mh0_page + 1;
1290  if (doc->mh1_page != -1) {
1291  this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1294  this->bbt_md->veroffs = 7;
1295  this->bbt_md->pages[0] = doc->mh1_page + 1;
1296  } else {
1297  this->bbt_md = NULL;
1298  }
1299 
1300  /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1301  At least as nand_bbt.c is currently written. */
1302  if ((ret = nand_scan_bbt(mtd, NULL)))
1303  return ret;
1304  mtd_device_register(mtd, NULL, 0);
1305  if (!no_autopart)
1306  mtd_device_register(mtd, parts, numparts);
1307  return 0;
1308 }
1309 
1310 static int __init inftl_scan_bbt(struct mtd_info *mtd)
1311 {
1312  int ret, numparts;
1313  struct nand_chip *this = mtd->priv;
1314  struct doc_priv *doc = this->priv;
1315  struct mtd_partition parts[5];
1316 
1317  if (this->numchips > doc->chips_per_floor) {
1318  printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
1319  return -EIO;
1320  }
1321 
1322  if (DoC_is_MillenniumPlus(doc)) {
1323  this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
1324  if (inftl_bbt_write)
1325  this->bbt_td->options |= NAND_BBT_WRITE;
1326  this->bbt_td->pages[0] = 2;
1327  this->bbt_md = NULL;
1328  } else {
1329  this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1330  if (inftl_bbt_write)
1331  this->bbt_td->options |= NAND_BBT_WRITE;
1332  this->bbt_td->offs = 8;
1333  this->bbt_td->len = 8;
1334  this->bbt_td->veroffs = 7;
1335  this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1336  this->bbt_td->reserved_block_code = 0x01;
1337  this->bbt_td->pattern = "MSYS_BBT";
1338 
1339  this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1340  if (inftl_bbt_write)
1341  this->bbt_md->options |= NAND_BBT_WRITE;
1342  this->bbt_md->offs = 8;
1343  this->bbt_md->len = 8;
1344  this->bbt_md->veroffs = 7;
1345  this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1346  this->bbt_md->reserved_block_code = 0x01;
1347  this->bbt_md->pattern = "TBB_SYSM";
1348  }
1349 
1350  /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1351  At least as nand_bbt.c is currently written. */
1352  if ((ret = nand_scan_bbt(mtd, NULL)))
1353  return ret;
1354  memset((char *)parts, 0, sizeof(parts));
1355  numparts = inftl_partscan(mtd, parts);
1356  /* At least for now, require the INFTL Media Header. We could probably
1357  do without it for non-INFTL use, since all it gives us is
1358  autopartitioning, but I want to give it more thought. */
1359  if (!numparts)
1360  return -EIO;
1361  mtd_device_register(mtd, NULL, 0);
1362  if (!no_autopart)
1363  mtd_device_register(mtd, parts, numparts);
1364  return 0;
1365 }
1366 
1367 static inline int __init doc2000_init(struct mtd_info *mtd)
1368 {
1369  struct nand_chip *this = mtd->priv;
1370  struct doc_priv *doc = this->priv;
1371 
1372  this->read_byte = doc2000_read_byte;
1373  this->write_buf = doc2000_writebuf;
1374  this->read_buf = doc2000_readbuf;
1375  this->scan_bbt = nftl_scan_bbt;
1376 
1378  doc2000_count_chips(mtd);
1379  mtd->name = "DiskOnChip 2000 (NFTL Model)";
1380  return (4 * doc->chips_per_floor);
1381 }
1382 
1383 static inline int __init doc2001_init(struct mtd_info *mtd)
1384 {
1385  struct nand_chip *this = mtd->priv;
1386  struct doc_priv *doc = this->priv;
1387 
1388  this->read_byte = doc2001_read_byte;
1389  this->write_buf = doc2001_writebuf;
1390  this->read_buf = doc2001_readbuf;
1391 
1392  ReadDOC(doc->virtadr, ChipID);
1393  ReadDOC(doc->virtadr, ChipID);
1394  ReadDOC(doc->virtadr, ChipID);
1395  if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
1396  /* It's not a Millennium; it's one of the newer
1397  DiskOnChip 2000 units with a similar ASIC.
1398  Treat it like a Millennium, except that it
1399  can have multiple chips. */
1400  doc2000_count_chips(mtd);
1401  mtd->name = "DiskOnChip 2000 (INFTL Model)";
1402  this->scan_bbt = inftl_scan_bbt;
1403  return (4 * doc->chips_per_floor);
1404  } else {
1405  /* Bog-standard Millennium */
1406  doc->chips_per_floor = 1;
1407  mtd->name = "DiskOnChip Millennium";
1408  this->scan_bbt = nftl_scan_bbt;
1409  return 1;
1410  }
1411 }
1412 
1413 static inline int __init doc2001plus_init(struct mtd_info *mtd)
1414 {
1415  struct nand_chip *this = mtd->priv;
1416  struct doc_priv *doc = this->priv;
1417 
1418  this->read_byte = doc2001plus_read_byte;
1419  this->write_buf = doc2001plus_writebuf;
1420  this->read_buf = doc2001plus_readbuf;
1421  this->scan_bbt = inftl_scan_bbt;
1422  this->cmd_ctrl = NULL;
1423  this->select_chip = doc2001plus_select_chip;
1424  this->cmdfunc = doc2001plus_command;
1425  this->ecc.hwctl = doc2001plus_enable_hwecc;
1426 
1427  doc->chips_per_floor = 1;
1428  mtd->name = "DiskOnChip Millennium Plus";
1429 
1430  return 1;
1431 }
1432 
1433 static int __init doc_probe(unsigned long physadr)
1434 {
1435  unsigned char ChipID;
1436  struct mtd_info *mtd;
1437  struct nand_chip *nand;
1438  struct doc_priv *doc;
1439  void __iomem *virtadr;
1440  unsigned char save_control;
1441  unsigned char tmp, tmpb, tmpc;
1442  int reg, len, numchips;
1443  int ret = 0;
1444 
1445  virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
1446  if (!virtadr) {
1447  printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
1448  return -EIO;
1449  }
1450 
1451  /* It's not possible to cleanly detect the DiskOnChip - the
1452  * bootup procedure will put the device into reset mode, and
1453  * it's not possible to talk to it without actually writing
1454  * to the DOCControl register. So we store the current contents
1455  * of the DOCControl register's location, in case we later decide
1456  * that it's not a DiskOnChip, and want to put it back how we
1457  * found it.
1458  */
1459  save_control = ReadDOC(virtadr, DOCControl);
1460 
1461  /* Reset the DiskOnChip ASIC */
1462  WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1463  WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1464 
1465  /* Enable the DiskOnChip ASIC */
1466  WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1467  WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1468 
1469  ChipID = ReadDOC(virtadr, ChipID);
1470 
1471  switch (ChipID) {
1472  case DOC_ChipID_Doc2k:
1473  reg = DoC_2k_ECCStatus;
1474  break;
1475  case DOC_ChipID_DocMil:
1476  reg = DoC_ECCConf;
1477  break;
1480  case 0:
1481  /* Possible Millennium Plus, need to do more checks */
1482  /* Possibly release from power down mode */
1483  for (tmp = 0; (tmp < 4); tmp++)
1484  ReadDOC(virtadr, Mplus_Power);
1485 
1486  /* Reset the Millennium Plus ASIC */
1488  WriteDOC(tmp, virtadr, Mplus_DOCControl);
1489  WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1490 
1491  mdelay(1);
1492  /* Enable the Millennium Plus ASIC */
1494  WriteDOC(tmp, virtadr, Mplus_DOCControl);
1495  WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1496  mdelay(1);
1497 
1498  ChipID = ReadDOC(virtadr, ChipID);
1499 
1500  switch (ChipID) {
1502  reg = DoC_Mplus_Toggle;
1503  break;
1505  printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1506  default:
1507  ret = -ENODEV;
1508  goto notfound;
1509  }
1510  break;
1511 
1512  default:
1513  ret = -ENODEV;
1514  goto notfound;
1515  }
1516  /* Check the TOGGLE bit in the ECC register */
1517  tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1518  tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1519  tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1520  if ((tmp == tmpb) || (tmp != tmpc)) {
1521  printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
1522  ret = -ENODEV;
1523  goto notfound;
1524  }
1525 
1526  for (mtd = doclist; mtd; mtd = doc->nextdoc) {
1527  unsigned char oldval;
1528  unsigned char newval;
1529  nand = mtd->priv;
1530  doc = nand->priv;
1531  /* Use the alias resolution register to determine if this is
1532  in fact the same DOC aliased to a new address. If writes
1533  to one chip's alias resolution register change the value on
1534  the other chip, they're the same chip. */
1535  if (ChipID == DOC_ChipID_DocMilPlus16) {
1536  oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1537  newval = ReadDOC(virtadr, Mplus_AliasResolution);
1538  } else {
1539  oldval = ReadDOC(doc->virtadr, AliasResolution);
1540  newval = ReadDOC(virtadr, AliasResolution);
1541  }
1542  if (oldval != newval)
1543  continue;
1544  if (ChipID == DOC_ChipID_DocMilPlus16) {
1545  WriteDOC(~newval, virtadr, Mplus_AliasResolution);
1546  oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1547  WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it
1548  } else {
1549  WriteDOC(~newval, virtadr, AliasResolution);
1550  oldval = ReadDOC(doc->virtadr, AliasResolution);
1551  WriteDOC(newval, virtadr, AliasResolution); // restore it
1552  }
1553  newval = ~newval;
1554  if (oldval == newval) {
1555  printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
1556  goto notfound;
1557  }
1558  }
1559 
1560  printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
1561 
1562  len = sizeof(struct mtd_info) +
1563  sizeof(struct nand_chip) + sizeof(struct doc_priv) + (2 * sizeof(struct nand_bbt_descr));
1564  mtd = kzalloc(len, GFP_KERNEL);
1565  if (!mtd) {
1566  printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len);
1567  ret = -ENOMEM;
1568  goto fail;
1569  }
1570 
1571  nand = (struct nand_chip *) (mtd + 1);
1572  doc = (struct doc_priv *) (nand + 1);
1573  nand->bbt_td = (struct nand_bbt_descr *) (doc + 1);
1574  nand->bbt_md = nand->bbt_td + 1;
1575 
1576  mtd->priv = nand;
1577  mtd->owner = THIS_MODULE;
1578 
1579  nand->priv = doc;
1580  nand->select_chip = doc200x_select_chip;
1581  nand->cmd_ctrl = doc200x_hwcontrol;
1582  nand->dev_ready = doc200x_dev_ready;
1583  nand->waitfunc = doc200x_wait;
1584  nand->block_bad = doc200x_block_bad;
1585  nand->ecc.hwctl = doc200x_enable_hwecc;
1586  nand->ecc.calculate = doc200x_calculate_ecc;
1587  nand->ecc.correct = doc200x_correct_data;
1588 
1589  nand->ecc.layout = &doc200x_oobinfo;
1590  nand->ecc.mode = NAND_ECC_HW_SYNDROME;
1591  nand->ecc.size = 512;
1592  nand->ecc.bytes = 6;
1593  nand->ecc.strength = 2;
1595 
1596  doc->physadr = physadr;
1597  doc->virtadr = virtadr;
1598  doc->ChipID = ChipID;
1599  doc->curfloor = -1;
1600  doc->curchip = -1;
1601  doc->mh0_page = -1;
1602  doc->mh1_page = -1;
1603  doc->nextdoc = doclist;
1604 
1605  if (ChipID == DOC_ChipID_Doc2k)
1606  numchips = doc2000_init(mtd);
1607  else if (ChipID == DOC_ChipID_DocMilPlus16)
1608  numchips = doc2001plus_init(mtd);
1609  else
1610  numchips = doc2001_init(mtd);
1611 
1612  if ((ret = nand_scan(mtd, numchips))) {
1613  /* DBB note: i believe nand_release is necessary here, as
1614  buffers may have been allocated in nand_base. Check with
1615  Thomas. FIX ME! */
1616  /* nand_release will call mtd_device_unregister, but we
1617  haven't yet added it. This is handled without incident by
1618  mtd_device_unregister, as far as I can tell. */
1619  nand_release(mtd);
1620  kfree(mtd);
1621  goto fail;
1622  }
1623 
1624  /* Success! */
1625  doclist = mtd;
1626  return 0;
1627 
1628  notfound:
1629  /* Put back the contents of the DOCControl register, in case it's not
1630  actually a DiskOnChip. */
1631  WriteDOC(save_control, virtadr, DOCControl);
1632  fail:
1633  iounmap(virtadr);
1634  return ret;
1635 }
1636 
1637 static void release_nanddoc(void)
1638 {
1639  struct mtd_info *mtd, *nextmtd;
1640  struct nand_chip *nand;
1641  struct doc_priv *doc;
1642 
1643  for (mtd = doclist; mtd; mtd = nextmtd) {
1644  nand = mtd->priv;
1645  doc = nand->priv;
1646 
1647  nextmtd = doc->nextdoc;
1648  nand_release(mtd);
1649  iounmap(doc->virtadr);
1650  kfree(mtd);
1651  }
1652 }
1653 
1654 static int __init init_nanddoc(void)
1655 {
1656  int i, ret = 0;
1657 
1658  /* We could create the decoder on demand, if memory is a concern.
1659  * This way we have it handy, if an error happens
1660  *
1661  * Symbolsize is 10 (bits)
1662  * Primitve polynomial is x^10+x^3+1
1663  * first consecutive root is 510
1664  * primitve element to generate roots = 1
1665  * generator polinomial degree = 4
1666  */
1667  rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
1668  if (!rs_decoder) {
1669  printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
1670  return -ENOMEM;
1671  }
1672 
1673  if (doc_config_location) {
1674  printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
1675  ret = doc_probe(doc_config_location);
1676  if (ret < 0)
1677  goto outerr;
1678  } else {
1679  for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
1680  doc_probe(doc_locations[i]);
1681  }
1682  }
1683  /* No banner message any more. Print a message if no DiskOnChip
1684  found, so the user knows we at least tried. */
1685  if (!doclist) {
1686  printk(KERN_INFO "No valid DiskOnChip devices found\n");
1687  ret = -ENODEV;
1688  goto outerr;
1689  }
1690  return 0;
1691  outerr:
1692  free_rs(rs_decoder);
1693  return ret;
1694 }
1695 
1696 static void __exit cleanup_nanddoc(void)
1697 {
1698  /* Cleanup the nand/DoC resources */
1699  release_nanddoc();
1700 
1701  /* Free the reed solomon resources */
1702  if (rs_decoder) {
1703  free_rs(rs_decoder);
1704  }
1705 }
1706 
1707 module_init(init_nanddoc);
1708 module_exit(cleanup_nanddoc);
1709 
1710 MODULE_LICENSE("GPL");
1711 MODULE_AUTHOR("David Woodhouse <[email protected]>");
1712 MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver");