Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
input.c
Go to the documentation of this file.
1 /*
2  * The input core
3  *
4  * Copyright (c) 1999-2002 Vojtech Pavlik
5  */
6 
7 /*
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
14 
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/idr.h>
18 #include <linux/input/mt.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/random.h>
22 #include <linux/major.h>
23 #include <linux/proc_fs.h>
24 #include <linux/sched.h>
25 #include <linux/seq_file.h>
26 #include <linux/poll.h>
27 #include <linux/device.h>
28 #include <linux/mutex.h>
29 #include <linux/rcupdate.h>
30 #include "input-compat.h"
31 
32 MODULE_AUTHOR("Vojtech Pavlik <[email protected]>");
33 MODULE_DESCRIPTION("Input core");
34 MODULE_LICENSE("GPL");
35 
36 #define INPUT_MAX_CHAR_DEVICES 1024
37 #define INPUT_FIRST_DYNAMIC_DEV 256
38 static DEFINE_IDA(input_ida);
39 
40 static LIST_HEAD(input_dev_list);
41 static LIST_HEAD(input_handler_list);
42 
43 /*
44  * input_mutex protects access to both input_dev_list and input_handler_list.
45  * This also causes input_[un]register_device and input_[un]register_handler
46  * be mutually exclusive which simplifies locking in drivers implementing
47  * input handlers.
48  */
49 static DEFINE_MUTEX(input_mutex);
50 
51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
52 
53 static inline int is_event_supported(unsigned int code,
54  unsigned long *bm, unsigned int max)
55 {
56  return code <= max && test_bit(code, bm);
57 }
58 
59 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
60 {
61  if (fuzz) {
62  if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
63  return old_val;
64 
65  if (value > old_val - fuzz && value < old_val + fuzz)
66  return (old_val * 3 + value) / 4;
67 
68  if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
69  return (old_val + value) / 2;
70  }
71 
72  return value;
73 }
74 
75 static void input_start_autorepeat(struct input_dev *dev, int code)
76 {
77  if (test_bit(EV_REP, dev->evbit) &&
78  dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
79  dev->timer.data) {
80  dev->repeat_key = code;
81  mod_timer(&dev->timer,
82  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
83  }
84 }
85 
86 static void input_stop_autorepeat(struct input_dev *dev)
87 {
88  del_timer(&dev->timer);
89 }
90 
91 /*
92  * Pass event first through all filters and then, if event has not been
93  * filtered out, through all open handles. This function is called with
94  * dev->event_lock held and interrupts disabled.
95  */
96 static unsigned int input_to_handler(struct input_handle *handle,
97  struct input_value *vals, unsigned int count)
98 {
99  struct input_handler *handler = handle->handler;
100  struct input_value *end = vals;
101  struct input_value *v;
102 
103  for (v = vals; v != vals + count; v++) {
104  if (handler->filter &&
105  handler->filter(handle, v->type, v->code, v->value))
106  continue;
107  if (end != v)
108  *end = *v;
109  end++;
110  }
111 
112  count = end - vals;
113  if (!count)
114  return 0;
115 
116  if (handler->events)
117  handler->events(handle, vals, count);
118  else if (handler->event)
119  for (v = vals; v != end; v++)
120  handler->event(handle, v->type, v->code, v->value);
121 
122  return count;
123 }
124 
125 /*
126  * Pass values first through all filters and then, if event has not been
127  * filtered out, through all open handles. This function is called with
128  * dev->event_lock held and interrupts disabled.
129  */
130 static void input_pass_values(struct input_dev *dev,
131  struct input_value *vals, unsigned int count)
132 {
133  struct input_handle *handle;
134  struct input_value *v;
135 
136  if (!count)
137  return;
138 
139  rcu_read_lock();
140 
141  handle = rcu_dereference(dev->grab);
142  if (handle) {
143  count = input_to_handler(handle, vals, count);
144  } else {
145  list_for_each_entry_rcu(handle, &dev->h_list, d_node)
146  if (handle->open)
147  count = input_to_handler(handle, vals, count);
148  }
149 
150  rcu_read_unlock();
151 
152  add_input_randomness(vals->type, vals->code, vals->value);
153 
154  /* trigger auto repeat for key events */
155  for (v = vals; v != vals + count; v++) {
156  if (v->type == EV_KEY && v->value != 2) {
157  if (v->value)
158  input_start_autorepeat(dev, v->code);
159  else
160  input_stop_autorepeat(dev);
161  }
162  }
163 }
164 
165 static void input_pass_event(struct input_dev *dev,
166  unsigned int type, unsigned int code, int value)
167 {
168  struct input_value vals[] = { { type, code, value } };
169 
170  input_pass_values(dev, vals, ARRAY_SIZE(vals));
171 }
172 
173 /*
174  * Generate software autorepeat event. Note that we take
175  * dev->event_lock here to avoid racing with input_event
176  * which may cause keys get "stuck".
177  */
178 static void input_repeat_key(unsigned long data)
179 {
180  struct input_dev *dev = (void *) data;
181  unsigned long flags;
182 
183  spin_lock_irqsave(&dev->event_lock, flags);
184 
185  if (test_bit(dev->repeat_key, dev->key) &&
186  is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
187  struct input_value vals[] = {
188  { EV_KEY, dev->repeat_key, 2 },
189  input_value_sync
190  };
191 
192  input_pass_values(dev, vals, ARRAY_SIZE(vals));
193 
194  if (dev->rep[REP_PERIOD])
195  mod_timer(&dev->timer, jiffies +
196  msecs_to_jiffies(dev->rep[REP_PERIOD]));
197  }
198 
199  spin_unlock_irqrestore(&dev->event_lock, flags);
200 }
201 
202 #define INPUT_IGNORE_EVENT 0
203 #define INPUT_PASS_TO_HANDLERS 1
204 #define INPUT_PASS_TO_DEVICE 2
205 #define INPUT_SLOT 4
206 #define INPUT_FLUSH 8
207 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
208 
209 static int input_handle_abs_event(struct input_dev *dev,
210  unsigned int code, int *pval)
211 {
212  struct input_mt *mt = dev->mt;
213  bool is_mt_event;
214  int *pold;
215 
216  if (code == ABS_MT_SLOT) {
217  /*
218  * "Stage" the event; we'll flush it later, when we
219  * get actual touch data.
220  */
221  if (mt && *pval >= 0 && *pval < mt->num_slots)
222  mt->slot = *pval;
223 
224  return INPUT_IGNORE_EVENT;
225  }
226 
227  is_mt_event = input_is_mt_value(code);
228 
229  if (!is_mt_event) {
230  pold = &dev->absinfo[code].value;
231  } else if (mt) {
232  pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
233  } else {
234  /*
235  * Bypass filtering for multi-touch events when
236  * not employing slots.
237  */
238  pold = NULL;
239  }
240 
241  if (pold) {
242  *pval = input_defuzz_abs_event(*pval, *pold,
243  dev->absinfo[code].fuzz);
244  if (*pold == *pval)
245  return INPUT_IGNORE_EVENT;
246 
247  *pold = *pval;
248  }
249 
250  /* Flush pending "slot" event */
251  if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
252  input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
254  }
255 
256  return INPUT_PASS_TO_HANDLERS;
257 }
258 
259 static int input_get_disposition(struct input_dev *dev,
260  unsigned int type, unsigned int code, int value)
261 {
262  int disposition = INPUT_IGNORE_EVENT;
263 
264  switch (type) {
265 
266  case EV_SYN:
267  switch (code) {
268  case SYN_CONFIG:
269  disposition = INPUT_PASS_TO_ALL;
270  break;
271 
272  case SYN_REPORT:
273  disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
274  break;
275  case SYN_MT_REPORT:
276  disposition = INPUT_PASS_TO_HANDLERS;
277  break;
278  }
279  break;
280 
281  case EV_KEY:
282  if (is_event_supported(code, dev->keybit, KEY_MAX)) {
283 
284  /* auto-repeat bypasses state updates */
285  if (value == 2) {
286  disposition = INPUT_PASS_TO_HANDLERS;
287  break;
288  }
289 
290  if (!!test_bit(code, dev->key) != !!value) {
291 
292  __change_bit(code, dev->key);
293  disposition = INPUT_PASS_TO_HANDLERS;
294  }
295  }
296  break;
297 
298  case EV_SW:
299  if (is_event_supported(code, dev->swbit, SW_MAX) &&
300  !!test_bit(code, dev->sw) != !!value) {
301 
302  __change_bit(code, dev->sw);
303  disposition = INPUT_PASS_TO_HANDLERS;
304  }
305  break;
306 
307  case EV_ABS:
308  if (is_event_supported(code, dev->absbit, ABS_MAX))
309  disposition = input_handle_abs_event(dev, code, &value);
310 
311  break;
312 
313  case EV_REL:
314  if (is_event_supported(code, dev->relbit, REL_MAX) && value)
315  disposition = INPUT_PASS_TO_HANDLERS;
316 
317  break;
318 
319  case EV_MSC:
320  if (is_event_supported(code, dev->mscbit, MSC_MAX))
321  disposition = INPUT_PASS_TO_ALL;
322 
323  break;
324 
325  case EV_LED:
326  if (is_event_supported(code, dev->ledbit, LED_MAX) &&
327  !!test_bit(code, dev->led) != !!value) {
328 
329  __change_bit(code, dev->led);
330  disposition = INPUT_PASS_TO_ALL;
331  }
332  break;
333 
334  case EV_SND:
335  if (is_event_supported(code, dev->sndbit, SND_MAX)) {
336 
337  if (!!test_bit(code, dev->snd) != !!value)
338  __change_bit(code, dev->snd);
339  disposition = INPUT_PASS_TO_ALL;
340  }
341  break;
342 
343  case EV_REP:
344  if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
345  dev->rep[code] = value;
346  disposition = INPUT_PASS_TO_ALL;
347  }
348  break;
349 
350  case EV_FF:
351  if (value >= 0)
352  disposition = INPUT_PASS_TO_ALL;
353  break;
354 
355  case EV_PWR:
356  disposition = INPUT_PASS_TO_ALL;
357  break;
358  }
359 
360  return disposition;
361 }
362 
363 static void input_handle_event(struct input_dev *dev,
364  unsigned int type, unsigned int code, int value)
365 {
366  int disposition;
367 
368  disposition = input_get_disposition(dev, type, code, value);
369 
370  if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
371  dev->event(dev, type, code, value);
372 
373  if (!dev->vals)
374  return;
375 
376  if (disposition & INPUT_PASS_TO_HANDLERS) {
377  struct input_value *v;
378 
379  if (disposition & INPUT_SLOT) {
380  v = &dev->vals[dev->num_vals++];
381  v->type = EV_ABS;
382  v->code = ABS_MT_SLOT;
383  v->value = dev->mt->slot;
384  }
385 
386  v = &dev->vals[dev->num_vals++];
387  v->type = type;
388  v->code = code;
389  v->value = value;
390  }
391 
392  if (disposition & INPUT_FLUSH) {
393  if (dev->num_vals >= 2)
394  input_pass_values(dev, dev->vals, dev->num_vals);
395  dev->num_vals = 0;
396  } else if (dev->num_vals >= dev->max_vals - 2) {
397  dev->vals[dev->num_vals++] = input_value_sync;
398  input_pass_values(dev, dev->vals, dev->num_vals);
399  dev->num_vals = 0;
400  }
401 
402 }
403 
421 void input_event(struct input_dev *dev,
422  unsigned int type, unsigned int code, int value)
423 {
424  unsigned long flags;
425 
426  if (is_event_supported(type, dev->evbit, EV_MAX)) {
427 
428  spin_lock_irqsave(&dev->event_lock, flags);
429  input_handle_event(dev, type, code, value);
430  spin_unlock_irqrestore(&dev->event_lock, flags);
431  }
432 }
434 
446 void input_inject_event(struct input_handle *handle,
447  unsigned int type, unsigned int code, int value)
448 {
449  struct input_dev *dev = handle->dev;
450  struct input_handle *grab;
451  unsigned long flags;
452 
453  if (is_event_supported(type, dev->evbit, EV_MAX)) {
454  spin_lock_irqsave(&dev->event_lock, flags);
455 
456  rcu_read_lock();
457  grab = rcu_dereference(dev->grab);
458  if (!grab || grab == handle)
459  input_handle_event(dev, type, code, value);
460  rcu_read_unlock();
461 
462  spin_unlock_irqrestore(&dev->event_lock, flags);
463  }
464 }
465 EXPORT_SYMBOL(input_inject_event);
466 
474 void input_alloc_absinfo(struct input_dev *dev)
475 {
476  if (!dev->absinfo)
477  dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
478  GFP_KERNEL);
479 
480  WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
481 }
482 EXPORT_SYMBOL(input_alloc_absinfo);
483 
484 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
485  int min, int max, int fuzz, int flat)
486 {
487  struct input_absinfo *absinfo;
488 
489  input_alloc_absinfo(dev);
490  if (!dev->absinfo)
491  return;
492 
493  absinfo = &dev->absinfo[axis];
494  absinfo->minimum = min;
495  absinfo->maximum = max;
496  absinfo->fuzz = fuzz;
497  absinfo->flat = flat;
498 
499  dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis);
500 }
501 EXPORT_SYMBOL(input_set_abs_params);
502 
503 
512 int input_grab_device(struct input_handle *handle)
513 {
514  struct input_dev *dev = handle->dev;
515  int retval;
516 
517  retval = mutex_lock_interruptible(&dev->mutex);
518  if (retval)
519  return retval;
520 
521  if (dev->grab) {
522  retval = -EBUSY;
523  goto out;
524  }
525 
526  rcu_assign_pointer(dev->grab, handle);
527 
528  out:
529  mutex_unlock(&dev->mutex);
530  return retval;
531 }
532 EXPORT_SYMBOL(input_grab_device);
533 
534 static void __input_release_device(struct input_handle *handle)
535 {
536  struct input_dev *dev = handle->dev;
537 
538  if (dev->grab == handle) {
539  rcu_assign_pointer(dev->grab, NULL);
540  /* Make sure input_pass_event() notices that grab is gone */
541  synchronize_rcu();
542 
543  list_for_each_entry(handle, &dev->h_list, d_node)
544  if (handle->open && handle->handler->start)
545  handle->handler->start(handle);
546  }
547 }
548 
558 void input_release_device(struct input_handle *handle)
559 {
560  struct input_dev *dev = handle->dev;
561 
562  mutex_lock(&dev->mutex);
563  __input_release_device(handle);
564  mutex_unlock(&dev->mutex);
565 }
566 EXPORT_SYMBOL(input_release_device);
567 
575 int input_open_device(struct input_handle *handle)
576 {
577  struct input_dev *dev = handle->dev;
578  int retval;
579 
580  retval = mutex_lock_interruptible(&dev->mutex);
581  if (retval)
582  return retval;
583 
584  if (dev->going_away) {
585  retval = -ENODEV;
586  goto out;
587  }
588 
589  handle->open++;
590 
591  if (!dev->users++ && dev->open)
592  retval = dev->open(dev);
593 
594  if (retval) {
595  dev->users--;
596  if (!--handle->open) {
597  /*
598  * Make sure we are not delivering any more events
599  * through this handle
600  */
601  synchronize_rcu();
602  }
603  }
604 
605  out:
606  mutex_unlock(&dev->mutex);
607  return retval;
608 }
609 EXPORT_SYMBOL(input_open_device);
610 
611 int input_flush_device(struct input_handle *handle, struct file *file)
612 {
613  struct input_dev *dev = handle->dev;
614  int retval;
615 
616  retval = mutex_lock_interruptible(&dev->mutex);
617  if (retval)
618  return retval;
619 
620  if (dev->flush)
621  retval = dev->flush(dev, file);
622 
623  mutex_unlock(&dev->mutex);
624  return retval;
625 }
626 EXPORT_SYMBOL(input_flush_device);
627 
635 void input_close_device(struct input_handle *handle)
636 {
637  struct input_dev *dev = handle->dev;
638 
639  mutex_lock(&dev->mutex);
640 
641  __input_release_device(handle);
642 
643  if (!--dev->users && dev->close)
644  dev->close(dev);
645 
646  if (!--handle->open) {
647  /*
648  * synchronize_rcu() makes sure that input_pass_event()
649  * completed and that no more input events are delivered
650  * through this handle
651  */
652  synchronize_rcu();
653  }
654 
655  mutex_unlock(&dev->mutex);
656 }
657 EXPORT_SYMBOL(input_close_device);
658 
659 /*
660  * Simulate keyup events for all keys that are marked as pressed.
661  * The function must be called with dev->event_lock held.
662  */
663 static void input_dev_release_keys(struct input_dev *dev)
664 {
665  int code;
666 
667  if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
668  for (code = 0; code <= KEY_MAX; code++) {
669  if (is_event_supported(code, dev->keybit, KEY_MAX) &&
670  __test_and_clear_bit(code, dev->key)) {
671  input_pass_event(dev, EV_KEY, code, 0);
672  }
673  }
674  input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
675  }
676 }
677 
678 /*
679  * Prepare device for unregistering
680  */
681 static void input_disconnect_device(struct input_dev *dev)
682 {
683  struct input_handle *handle;
684 
685  /*
686  * Mark device as going away. Note that we take dev->mutex here
687  * not to protect access to dev->going_away but rather to ensure
688  * that there are no threads in the middle of input_open_device()
689  */
690  mutex_lock(&dev->mutex);
691  dev->going_away = true;
692  mutex_unlock(&dev->mutex);
693 
694  spin_lock_irq(&dev->event_lock);
695 
696  /*
697  * Simulate keyup events for all pressed keys so that handlers
698  * are not left with "stuck" keys. The driver may continue
699  * generate events even after we done here but they will not
700  * reach any handlers.
701  */
702  input_dev_release_keys(dev);
703 
704  list_for_each_entry(handle, &dev->h_list, d_node)
705  handle->open = 0;
706 
707  spin_unlock_irq(&dev->event_lock);
708 }
709 
720 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
721  unsigned int *scancode)
722 {
723  switch (ke->len) {
724  case 1:
725  *scancode = *((u8 *)ke->scancode);
726  break;
727 
728  case 2:
729  *scancode = *((u16 *)ke->scancode);
730  break;
731 
732  case 4:
733  *scancode = *((u32 *)ke->scancode);
734  break;
735 
736  default:
737  return -EINVAL;
738  }
739 
740  return 0;
741 }
742 EXPORT_SYMBOL(input_scancode_to_scalar);
743 
744 /*
745  * Those routines handle the default case where no [gs]etkeycode() is
746  * defined. In this case, an array indexed by the scancode is used.
747  */
748 
749 static unsigned int input_fetch_keycode(struct input_dev *dev,
750  unsigned int index)
751 {
752  switch (dev->keycodesize) {
753  case 1:
754  return ((u8 *)dev->keycode)[index];
755 
756  case 2:
757  return ((u16 *)dev->keycode)[index];
758 
759  default:
760  return ((u32 *)dev->keycode)[index];
761  }
762 }
763 
764 static int input_default_getkeycode(struct input_dev *dev,
765  struct input_keymap_entry *ke)
766 {
767  unsigned int index;
768  int error;
769 
770  if (!dev->keycodesize)
771  return -EINVAL;
772 
773  if (ke->flags & INPUT_KEYMAP_BY_INDEX)
774  index = ke->index;
775  else {
776  error = input_scancode_to_scalar(ke, &index);
777  if (error)
778  return error;
779  }
780 
781  if (index >= dev->keycodemax)
782  return -EINVAL;
783 
784  ke->keycode = input_fetch_keycode(dev, index);
785  ke->index = index;
786  ke->len = sizeof(index);
787  memcpy(ke->scancode, &index, sizeof(index));
788 
789  return 0;
790 }
791 
792 static int input_default_setkeycode(struct input_dev *dev,
793  const struct input_keymap_entry *ke,
794  unsigned int *old_keycode)
795 {
796  unsigned int index;
797  int error;
798  int i;
799 
800  if (!dev->keycodesize)
801  return -EINVAL;
802 
803  if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
804  index = ke->index;
805  } else {
806  error = input_scancode_to_scalar(ke, &index);
807  if (error)
808  return error;
809  }
810 
811  if (index >= dev->keycodemax)
812  return -EINVAL;
813 
814  if (dev->keycodesize < sizeof(ke->keycode) &&
815  (ke->keycode >> (dev->keycodesize * 8)))
816  return -EINVAL;
817 
818  switch (dev->keycodesize) {
819  case 1: {
820  u8 *k = (u8 *)dev->keycode;
821  *old_keycode = k[index];
822  k[index] = ke->keycode;
823  break;
824  }
825  case 2: {
826  u16 *k = (u16 *)dev->keycode;
827  *old_keycode = k[index];
828  k[index] = ke->keycode;
829  break;
830  }
831  default: {
832  u32 *k = (u32 *)dev->keycode;
833  *old_keycode = k[index];
834  k[index] = ke->keycode;
835  break;
836  }
837  }
838 
839  __clear_bit(*old_keycode, dev->keybit);
840  __set_bit(ke->keycode, dev->keybit);
841 
842  for (i = 0; i < dev->keycodemax; i++) {
843  if (input_fetch_keycode(dev, i) == *old_keycode) {
844  __set_bit(*old_keycode, dev->keybit);
845  break; /* Setting the bit twice is useless, so break */
846  }
847  }
848 
849  return 0;
850 }
851 
860 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
861 {
862  unsigned long flags;
863  int retval;
864 
865  spin_lock_irqsave(&dev->event_lock, flags);
866  retval = dev->getkeycode(dev, ke);
867  spin_unlock_irqrestore(&dev->event_lock, flags);
868 
869  return retval;
870 }
871 EXPORT_SYMBOL(input_get_keycode);
872 
881 int input_set_keycode(struct input_dev *dev,
882  const struct input_keymap_entry *ke)
883 {
884  unsigned long flags;
885  unsigned int old_keycode;
886  int retval;
887 
888  if (ke->keycode > KEY_MAX)
889  return -EINVAL;
890 
891  spin_lock_irqsave(&dev->event_lock, flags);
892 
893  retval = dev->setkeycode(dev, ke, &old_keycode);
894  if (retval)
895  goto out;
896 
897  /* Make sure KEY_RESERVED did not get enabled. */
898  __clear_bit(KEY_RESERVED, dev->keybit);
899 
900  /*
901  * Simulate keyup event if keycode is not present
902  * in the keymap anymore
903  */
904  if (test_bit(EV_KEY, dev->evbit) &&
905  !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
906  __test_and_clear_bit(old_keycode, dev->key)) {
907  struct input_value vals[] = {
908  { EV_KEY, old_keycode, 0 },
909  input_value_sync
910  };
911 
912  input_pass_values(dev, vals, ARRAY_SIZE(vals));
913  }
914 
915  out:
916  spin_unlock_irqrestore(&dev->event_lock, flags);
917 
918  return retval;
919 }
920 EXPORT_SYMBOL(input_set_keycode);
921 
922 static const struct input_device_id *input_match_device(struct input_handler *handler,
923  struct input_dev *dev)
924 {
925  const struct input_device_id *id;
926 
927  for (id = handler->id_table; id->flags || id->driver_info; id++) {
928 
930  if (id->bustype != dev->id.bustype)
931  continue;
932 
934  if (id->vendor != dev->id.vendor)
935  continue;
936 
938  if (id->product != dev->id.product)
939  continue;
940 
942  if (id->version != dev->id.version)
943  continue;
944 
945  if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX))
946  continue;
947 
948  if (!bitmap_subset(id->keybit, dev->keybit, KEY_MAX))
949  continue;
950 
951  if (!bitmap_subset(id->relbit, dev->relbit, REL_MAX))
952  continue;
953 
954  if (!bitmap_subset(id->absbit, dev->absbit, ABS_MAX))
955  continue;
956 
957  if (!bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX))
958  continue;
959 
960  if (!bitmap_subset(id->ledbit, dev->ledbit, LED_MAX))
961  continue;
962 
963  if (!bitmap_subset(id->sndbit, dev->sndbit, SND_MAX))
964  continue;
965 
966  if (!bitmap_subset(id->ffbit, dev->ffbit, FF_MAX))
967  continue;
968 
969  if (!bitmap_subset(id->swbit, dev->swbit, SW_MAX))
970  continue;
971 
972  if (!handler->match || handler->match(handler, dev))
973  return id;
974  }
975 
976  return NULL;
977 }
978 
979 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
980 {
981  const struct input_device_id *id;
982  int error;
983 
984  id = input_match_device(handler, dev);
985  if (!id)
986  return -ENODEV;
987 
988  error = handler->connect(handler, dev, id);
989  if (error && error != -ENODEV)
990  pr_err("failed to attach handler %s to device %s, error: %d\n",
991  handler->name, kobject_name(&dev->dev.kobj), error);
992 
993  return error;
994 }
995 
996 #ifdef CONFIG_COMPAT
997 
998 static int input_bits_to_string(char *buf, int buf_size,
999  unsigned long bits, bool skip_empty)
1000 {
1001  int len = 0;
1002 
1003  if (INPUT_COMPAT_TEST) {
1004  u32 dword = bits >> 32;
1005  if (dword || !skip_empty)
1006  len += snprintf(buf, buf_size, "%x ", dword);
1007 
1008  dword = bits & 0xffffffffUL;
1009  if (dword || !skip_empty || len)
1010  len += snprintf(buf + len, max(buf_size - len, 0),
1011  "%x", dword);
1012  } else {
1013  if (bits || !skip_empty)
1014  len += snprintf(buf, buf_size, "%lx", bits);
1015  }
1016 
1017  return len;
1018 }
1019 
1020 #else /* !CONFIG_COMPAT */
1021 
1022 static int input_bits_to_string(char *buf, int buf_size,
1023  unsigned long bits, bool skip_empty)
1024 {
1025  return bits || !skip_empty ?
1026  snprintf(buf, buf_size, "%lx", bits) : 0;
1027 }
1028 
1029 #endif
1030 
1031 #ifdef CONFIG_PROC_FS
1032 
1033 static struct proc_dir_entry *proc_bus_input_dir;
1034 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1035 static int input_devices_state;
1036 
1037 static inline void input_wakeup_procfs_readers(void)
1038 {
1039  input_devices_state++;
1040  wake_up(&input_devices_poll_wait);
1041 }
1042 
1043 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
1044 {
1045  poll_wait(file, &input_devices_poll_wait, wait);
1046  if (file->f_version != input_devices_state) {
1047  file->f_version = input_devices_state;
1048  return POLLIN | POLLRDNORM;
1049  }
1050 
1051  return 0;
1052 }
1053 
1054 union input_seq_state {
1055  struct {
1056  unsigned short pos;
1057  bool mutex_acquired;
1058  };
1059  void *p;
1060 };
1061 
1062 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1063 {
1064  union input_seq_state *state = (union input_seq_state *)&seq->private;
1065  int error;
1066 
1067  /* We need to fit into seq->private pointer */
1068  BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1069 
1070  error = mutex_lock_interruptible(&input_mutex);
1071  if (error) {
1072  state->mutex_acquired = false;
1073  return ERR_PTR(error);
1074  }
1075 
1076  state->mutex_acquired = true;
1077 
1078  return seq_list_start(&input_dev_list, *pos);
1079 }
1080 
1081 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1082 {
1083  return seq_list_next(v, &input_dev_list, pos);
1084 }
1085 
1086 static void input_seq_stop(struct seq_file *seq, void *v)
1087 {
1088  union input_seq_state *state = (union input_seq_state *)&seq->private;
1089 
1090  if (state->mutex_acquired)
1091  mutex_unlock(&input_mutex);
1092 }
1093 
1094 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1095  unsigned long *bitmap, int max)
1096 {
1097  int i;
1098  bool skip_empty = true;
1099  char buf[18];
1100 
1101  seq_printf(seq, "B: %s=", name);
1102 
1103  for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1104  if (input_bits_to_string(buf, sizeof(buf),
1105  bitmap[i], skip_empty)) {
1106  skip_empty = false;
1107  seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1108  }
1109  }
1110 
1111  /*
1112  * If no output was produced print a single 0.
1113  */
1114  if (skip_empty)
1115  seq_puts(seq, "0");
1116 
1117  seq_putc(seq, '\n');
1118 }
1119 
1120 static int input_devices_seq_show(struct seq_file *seq, void *v)
1121 {
1122  struct input_dev *dev = container_of(v, struct input_dev, node);
1123  const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1124  struct input_handle *handle;
1125 
1126  seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1127  dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1128 
1129  seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1130  seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1131  seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1132  seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1133  seq_printf(seq, "H: Handlers=");
1134 
1135  list_for_each_entry(handle, &dev->h_list, d_node)
1136  seq_printf(seq, "%s ", handle->name);
1137  seq_putc(seq, '\n');
1138 
1139  input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1140 
1141  input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1142  if (test_bit(EV_KEY, dev->evbit))
1143  input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1144  if (test_bit(EV_REL, dev->evbit))
1145  input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1146  if (test_bit(EV_ABS, dev->evbit))
1147  input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1148  if (test_bit(EV_MSC, dev->evbit))
1149  input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1150  if (test_bit(EV_LED, dev->evbit))
1151  input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1152  if (test_bit(EV_SND, dev->evbit))
1153  input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1154  if (test_bit(EV_FF, dev->evbit))
1155  input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1156  if (test_bit(EV_SW, dev->evbit))
1157  input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1158 
1159  seq_putc(seq, '\n');
1160 
1161  kfree(path);
1162  return 0;
1163 }
1164 
1165 static const struct seq_operations input_devices_seq_ops = {
1166  .start = input_devices_seq_start,
1167  .next = input_devices_seq_next,
1168  .stop = input_seq_stop,
1169  .show = input_devices_seq_show,
1170 };
1171 
1172 static int input_proc_devices_open(struct inode *inode, struct file *file)
1173 {
1174  return seq_open(file, &input_devices_seq_ops);
1175 }
1176 
1177 static const struct file_operations input_devices_fileops = {
1178  .owner = THIS_MODULE,
1179  .open = input_proc_devices_open,
1180  .poll = input_proc_devices_poll,
1181  .read = seq_read,
1182  .llseek = seq_lseek,
1183  .release = seq_release,
1184 };
1185 
1186 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1187 {
1188  union input_seq_state *state = (union input_seq_state *)&seq->private;
1189  int error;
1190 
1191  /* We need to fit into seq->private pointer */
1192  BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1193 
1194  error = mutex_lock_interruptible(&input_mutex);
1195  if (error) {
1196  state->mutex_acquired = false;
1197  return ERR_PTR(error);
1198  }
1199 
1200  state->mutex_acquired = true;
1201  state->pos = *pos;
1202 
1203  return seq_list_start(&input_handler_list, *pos);
1204 }
1205 
1206 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1207 {
1208  union input_seq_state *state = (union input_seq_state *)&seq->private;
1209 
1210  state->pos = *pos + 1;
1211  return seq_list_next(v, &input_handler_list, pos);
1212 }
1213 
1214 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1215 {
1216  struct input_handler *handler = container_of(v, struct input_handler, node);
1217  union input_seq_state *state = (union input_seq_state *)&seq->private;
1218 
1219  seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1220  if (handler->filter)
1221  seq_puts(seq, " (filter)");
1222  if (handler->legacy_minors)
1223  seq_printf(seq, " Minor=%d", handler->minor);
1224  seq_putc(seq, '\n');
1225 
1226  return 0;
1227 }
1228 
1229 static const struct seq_operations input_handlers_seq_ops = {
1230  .start = input_handlers_seq_start,
1231  .next = input_handlers_seq_next,
1232  .stop = input_seq_stop,
1233  .show = input_handlers_seq_show,
1234 };
1235 
1236 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1237 {
1238  return seq_open(file, &input_handlers_seq_ops);
1239 }
1240 
1241 static const struct file_operations input_handlers_fileops = {
1242  .owner = THIS_MODULE,
1243  .open = input_proc_handlers_open,
1244  .read = seq_read,
1245  .llseek = seq_lseek,
1246  .release = seq_release,
1247 };
1248 
1249 static int __init input_proc_init(void)
1250 {
1251  struct proc_dir_entry *entry;
1252 
1253  proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1254  if (!proc_bus_input_dir)
1255  return -ENOMEM;
1256 
1257  entry = proc_create("devices", 0, proc_bus_input_dir,
1258  &input_devices_fileops);
1259  if (!entry)
1260  goto fail1;
1261 
1262  entry = proc_create("handlers", 0, proc_bus_input_dir,
1263  &input_handlers_fileops);
1264  if (!entry)
1265  goto fail2;
1266 
1267  return 0;
1268 
1269  fail2: remove_proc_entry("devices", proc_bus_input_dir);
1270  fail1: remove_proc_entry("bus/input", NULL);
1271  return -ENOMEM;
1272 }
1273 
1274 static void input_proc_exit(void)
1275 {
1276  remove_proc_entry("devices", proc_bus_input_dir);
1277  remove_proc_entry("handlers", proc_bus_input_dir);
1278  remove_proc_entry("bus/input", NULL);
1279 }
1280 
1281 #else /* !CONFIG_PROC_FS */
1282 static inline void input_wakeup_procfs_readers(void) { }
1283 static inline int input_proc_init(void) { return 0; }
1284 static inline void input_proc_exit(void) { }
1285 #endif
1286 
1287 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1288 static ssize_t input_dev_show_##name(struct device *dev, \
1289  struct device_attribute *attr, \
1290  char *buf) \
1291 { \
1292  struct input_dev *input_dev = to_input_dev(dev); \
1293  \
1294  return scnprintf(buf, PAGE_SIZE, "%s\n", \
1295  input_dev->name ? input_dev->name : ""); \
1296 } \
1297 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1298 
1302 
1303 static int input_print_modalias_bits(char *buf, int size,
1304  char name, unsigned long *bm,
1305  unsigned int min_bit, unsigned int max_bit)
1306 {
1307  int len = 0, i;
1308 
1309  len += snprintf(buf, max(size, 0), "%c", name);
1310  for (i = min_bit; i < max_bit; i++)
1311  if (bm[BIT_WORD(i)] & BIT_MASK(i))
1312  len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1313  return len;
1314 }
1315 
1316 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1317  int add_cr)
1318 {
1319  int len;
1320 
1321  len = snprintf(buf, max(size, 0),
1322  "input:b%04Xv%04Xp%04Xe%04X-",
1323  id->id.bustype, id->id.vendor,
1324  id->id.product, id->id.version);
1325 
1326  len += input_print_modalias_bits(buf + len, size - len,
1327  'e', id->evbit, 0, EV_MAX);
1328  len += input_print_modalias_bits(buf + len, size - len,
1329  'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1330  len += input_print_modalias_bits(buf + len, size - len,
1331  'r', id->relbit, 0, REL_MAX);
1332  len += input_print_modalias_bits(buf + len, size - len,
1333  'a', id->absbit, 0, ABS_MAX);
1334  len += input_print_modalias_bits(buf + len, size - len,
1335  'm', id->mscbit, 0, MSC_MAX);
1336  len += input_print_modalias_bits(buf + len, size - len,
1337  'l', id->ledbit, 0, LED_MAX);
1338  len += input_print_modalias_bits(buf + len, size - len,
1339  's', id->sndbit, 0, SND_MAX);
1340  len += input_print_modalias_bits(buf + len, size - len,
1341  'f', id->ffbit, 0, FF_MAX);
1342  len += input_print_modalias_bits(buf + len, size - len,
1343  'w', id->swbit, 0, SW_MAX);
1344 
1345  if (add_cr)
1346  len += snprintf(buf + len, max(size - len, 0), "\n");
1347 
1348  return len;
1349 }
1350 
1351 static ssize_t input_dev_show_modalias(struct device *dev,
1352  struct device_attribute *attr,
1353  char *buf)
1354 {
1355  struct input_dev *id = to_input_dev(dev);
1356  ssize_t len;
1357 
1358  len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1359 
1360  return min_t(int, len, PAGE_SIZE);
1361 }
1362 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1363 
1364 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1365  int max, int add_cr);
1366 
1367 static ssize_t input_dev_show_properties(struct device *dev,
1368  struct device_attribute *attr,
1369  char *buf)
1370 {
1371  struct input_dev *input_dev = to_input_dev(dev);
1372  int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1373  INPUT_PROP_MAX, true);
1374  return min_t(int, len, PAGE_SIZE);
1375 }
1376 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1377 
1378 static struct attribute *input_dev_attrs[] = {
1379  &dev_attr_name.attr,
1380  &dev_attr_phys.attr,
1381  &dev_attr_uniq.attr,
1382  &dev_attr_modalias.attr,
1383  &dev_attr_properties.attr,
1384  NULL
1385 };
1386 
1387 static struct attribute_group input_dev_attr_group = {
1388  .attrs = input_dev_attrs,
1389 };
1390 
1391 #define INPUT_DEV_ID_ATTR(name) \
1392 static ssize_t input_dev_show_id_##name(struct device *dev, \
1393  struct device_attribute *attr, \
1394  char *buf) \
1395 { \
1396  struct input_dev *input_dev = to_input_dev(dev); \
1397  return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1398 } \
1399 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1400 
1401 INPUT_DEV_ID_ATTR(bustype);
1405 
1406 static struct attribute *input_dev_id_attrs[] = {
1407  &dev_attr_bustype.attr,
1408  &dev_attr_vendor.attr,
1409  &dev_attr_product.attr,
1410  &dev_attr_version.attr,
1411  NULL
1412 };
1413 
1414 static struct attribute_group input_dev_id_attr_group = {
1415  .name = "id",
1416  .attrs = input_dev_id_attrs,
1417 };
1418 
1419 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1420  int max, int add_cr)
1421 {
1422  int i;
1423  int len = 0;
1424  bool skip_empty = true;
1425 
1426  for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1427  len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1428  bitmap[i], skip_empty);
1429  if (len) {
1430  skip_empty = false;
1431  if (i > 0)
1432  len += snprintf(buf + len, max(buf_size - len, 0), " ");
1433  }
1434  }
1435 
1436  /*
1437  * If no output was produced print a single 0.
1438  */
1439  if (len == 0)
1440  len = snprintf(buf, buf_size, "%d", 0);
1441 
1442  if (add_cr)
1443  len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1444 
1445  return len;
1446 }
1447 
1448 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1449 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1450  struct device_attribute *attr, \
1451  char *buf) \
1452 { \
1453  struct input_dev *input_dev = to_input_dev(dev); \
1454  int len = input_print_bitmap(buf, PAGE_SIZE, \
1455  input_dev->bm##bit, ev##_MAX, \
1456  true); \
1457  return min_t(int, len, PAGE_SIZE); \
1458 } \
1459 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1460 
1461 INPUT_DEV_CAP_ATTR(EV, ev);
1463 INPUT_DEV_CAP_ATTR(REL, rel);
1465 INPUT_DEV_CAP_ATTR(MSC, msc);
1467 INPUT_DEV_CAP_ATTR(SND, snd);
1468 INPUT_DEV_CAP_ATTR(FF, ff);
1470 
1471 static struct attribute *input_dev_caps_attrs[] = {
1472  &dev_attr_ev.attr,
1473  &dev_attr_key.attr,
1474  &dev_attr_rel.attr,
1475  &dev_attr_abs.attr,
1476  &dev_attr_msc.attr,
1477  &dev_attr_led.attr,
1478  &dev_attr_snd.attr,
1479  &dev_attr_ff.attr,
1480  &dev_attr_sw.attr,
1481  NULL
1482 };
1483 
1484 static struct attribute_group input_dev_caps_attr_group = {
1485  .name = "capabilities",
1486  .attrs = input_dev_caps_attrs,
1487 };
1488 
1489 static const struct attribute_group *input_dev_attr_groups[] = {
1490  &input_dev_attr_group,
1491  &input_dev_id_attr_group,
1492  &input_dev_caps_attr_group,
1493  NULL
1494 };
1495 
1496 static void input_dev_release(struct device *device)
1497 {
1498  struct input_dev *dev = to_input_dev(device);
1499 
1500  input_ff_destroy(dev);
1502  kfree(dev->absinfo);
1503  kfree(dev->vals);
1504  kfree(dev);
1505 
1506  module_put(THIS_MODULE);
1507 }
1508 
1509 /*
1510  * Input uevent interface - loading event handlers based on
1511  * device bitfields.
1512  */
1513 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1514  const char *name, unsigned long *bitmap, int max)
1515 {
1516  int len;
1517 
1518  if (add_uevent_var(env, "%s", name))
1519  return -ENOMEM;
1520 
1521  len = input_print_bitmap(&env->buf[env->buflen - 1],
1522  sizeof(env->buf) - env->buflen,
1523  bitmap, max, false);
1524  if (len >= (sizeof(env->buf) - env->buflen))
1525  return -ENOMEM;
1526 
1527  env->buflen += len;
1528  return 0;
1529 }
1530 
1531 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1532  struct input_dev *dev)
1533 {
1534  int len;
1535 
1536  if (add_uevent_var(env, "MODALIAS="))
1537  return -ENOMEM;
1538 
1539  len = input_print_modalias(&env->buf[env->buflen - 1],
1540  sizeof(env->buf) - env->buflen,
1541  dev, 0);
1542  if (len >= (sizeof(env->buf) - env->buflen))
1543  return -ENOMEM;
1544 
1545  env->buflen += len;
1546  return 0;
1547 }
1548 
1549 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1550  do { \
1551  int err = add_uevent_var(env, fmt, val); \
1552  if (err) \
1553  return err; \
1554  } while (0)
1555 
1556 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1557  do { \
1558  int err = input_add_uevent_bm_var(env, name, bm, max); \
1559  if (err) \
1560  return err; \
1561  } while (0)
1562 
1563 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1564  do { \
1565  int err = input_add_uevent_modalias_var(env, dev); \
1566  if (err) \
1567  return err; \
1568  } while (0)
1569 
1570 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1571 {
1572  struct input_dev *dev = to_input_dev(device);
1573 
1574  INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1575  dev->id.bustype, dev->id.vendor,
1576  dev->id.product, dev->id.version);
1577  if (dev->name)
1578  INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1579  if (dev->phys)
1580  INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1581  if (dev->uniq)
1582  INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1583 
1584  INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1585 
1586  INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1587  if (test_bit(EV_KEY, dev->evbit))
1588  INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1589  if (test_bit(EV_REL, dev->evbit))
1590  INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1591  if (test_bit(EV_ABS, dev->evbit))
1592  INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1593  if (test_bit(EV_MSC, dev->evbit))
1594  INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1595  if (test_bit(EV_LED, dev->evbit))
1596  INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1597  if (test_bit(EV_SND, dev->evbit))
1598  INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1599  if (test_bit(EV_FF, dev->evbit))
1600  INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1601  if (test_bit(EV_SW, dev->evbit))
1602  INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1603 
1605 
1606  return 0;
1607 }
1608 
1609 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1610  do { \
1611  int i; \
1612  bool active; \
1613  \
1614  if (!test_bit(EV_##type, dev->evbit)) \
1615  break; \
1616  \
1617  for (i = 0; i < type##_MAX; i++) { \
1618  if (!test_bit(i, dev->bits##bit)) \
1619  continue; \
1620  \
1621  active = test_bit(i, dev->bits); \
1622  if (!active && !on) \
1623  continue; \
1624  \
1625  dev->event(dev, EV_##type, i, on ? active : 0); \
1626  } \
1627  } while (0)
1628 
1629 static void input_dev_toggle(struct input_dev *dev, bool activate)
1630 {
1631  if (!dev->event)
1632  return;
1633 
1634  INPUT_DO_TOGGLE(dev, LED, led, activate);
1635  INPUT_DO_TOGGLE(dev, SND, snd, activate);
1636 
1637  if (activate && test_bit(EV_REP, dev->evbit)) {
1638  dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1639  dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1640  }
1641 }
1642 
1651 void input_reset_device(struct input_dev *dev)
1652 {
1653  mutex_lock(&dev->mutex);
1654 
1655  if (dev->users) {
1656  input_dev_toggle(dev, true);
1657 
1658  /*
1659  * Keys that have been pressed at suspend time are unlikely
1660  * to be still pressed when we resume.
1661  */
1662  spin_lock_irq(&dev->event_lock);
1663  input_dev_release_keys(dev);
1664  spin_unlock_irq(&dev->event_lock);
1665  }
1666 
1667  mutex_unlock(&dev->mutex);
1668 }
1669 EXPORT_SYMBOL(input_reset_device);
1670 
1671 #ifdef CONFIG_PM
1672 static int input_dev_suspend(struct device *dev)
1673 {
1674  struct input_dev *input_dev = to_input_dev(dev);
1675 
1676  mutex_lock(&input_dev->mutex);
1677 
1678  if (input_dev->users)
1679  input_dev_toggle(input_dev, false);
1680 
1681  mutex_unlock(&input_dev->mutex);
1682 
1683  return 0;
1684 }
1685 
1686 static int input_dev_resume(struct device *dev)
1687 {
1688  struct input_dev *input_dev = to_input_dev(dev);
1689 
1690  input_reset_device(input_dev);
1691 
1692  return 0;
1693 }
1694 
1695 static const struct dev_pm_ops input_dev_pm_ops = {
1696  .suspend = input_dev_suspend,
1697  .resume = input_dev_resume,
1698  .poweroff = input_dev_suspend,
1699  .restore = input_dev_resume,
1700 };
1701 #endif /* CONFIG_PM */
1702 
1703 static struct device_type input_dev_type = {
1704  .groups = input_dev_attr_groups,
1705  .release = input_dev_release,
1706  .uevent = input_dev_uevent,
1707 #ifdef CONFIG_PM
1708  .pm = &input_dev_pm_ops,
1709 #endif
1710 };
1711 
1712 static char *input_devnode(struct device *dev, umode_t *mode)
1713 {
1714  return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1715 }
1716 
1717 struct class input_class = {
1718  .name = "input",
1719  .devnode = input_devnode,
1720 };
1721 EXPORT_SYMBOL_GPL(input_class);
1722 
1732 struct input_dev *input_allocate_device(void)
1733 {
1734  struct input_dev *dev;
1735 
1736  dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1737  if (dev) {
1738  dev->dev.type = &input_dev_type;
1739  dev->dev.class = &input_class;
1740  device_initialize(&dev->dev);
1741  mutex_init(&dev->mutex);
1742  spin_lock_init(&dev->event_lock);
1743  INIT_LIST_HEAD(&dev->h_list);
1744  INIT_LIST_HEAD(&dev->node);
1745 
1746  __module_get(THIS_MODULE);
1747  }
1748 
1749  return dev;
1750 }
1751 EXPORT_SYMBOL(input_allocate_device);
1752 
1767 void input_free_device(struct input_dev *dev)
1768 {
1769  if (dev)
1770  input_put_device(dev);
1771 }
1772 EXPORT_SYMBOL(input_free_device);
1773 
1783 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1784 {
1785  switch (type) {
1786  case EV_KEY:
1787  __set_bit(code, dev->keybit);
1788  break;
1789 
1790  case EV_REL:
1791  __set_bit(code, dev->relbit);
1792  break;
1793 
1794  case EV_ABS:
1795  __set_bit(code, dev->absbit);
1796  break;
1797 
1798  case EV_MSC:
1799  __set_bit(code, dev->mscbit);
1800  break;
1801 
1802  case EV_SW:
1803  __set_bit(code, dev->swbit);
1804  break;
1805 
1806  case EV_LED:
1807  __set_bit(code, dev->ledbit);
1808  break;
1809 
1810  case EV_SND:
1811  __set_bit(code, dev->sndbit);
1812  break;
1813 
1814  case EV_FF:
1815  __set_bit(code, dev->ffbit);
1816  break;
1817 
1818  case EV_PWR:
1819  /* do nothing */
1820  break;
1821 
1822  default:
1823  pr_err("input_set_capability: unknown type %u (code %u)\n",
1824  type, code);
1825  dump_stack();
1826  return;
1827  }
1828 
1829  __set_bit(type, dev->evbit);
1830 }
1831 EXPORT_SYMBOL(input_set_capability);
1832 
1833 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1834 {
1835  int mt_slots;
1836  int i;
1837  unsigned int events;
1838 
1839  if (dev->mt) {
1840  mt_slots = dev->mt->num_slots;
1841  } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1842  mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1843  dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
1844  mt_slots = clamp(mt_slots, 2, 32);
1845  } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1846  mt_slots = 2;
1847  } else {
1848  mt_slots = 0;
1849  }
1850 
1851  events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1852 
1853  for (i = 0; i < ABS_CNT; i++) {
1854  if (test_bit(i, dev->absbit)) {
1855  if (input_is_mt_axis(i))
1856  events += mt_slots;
1857  else
1858  events++;
1859  }
1860  }
1861 
1862  for (i = 0; i < REL_CNT; i++)
1863  if (test_bit(i, dev->relbit))
1864  events++;
1865 
1866  /* Make room for KEY and MSC events */
1867  events += 7;
1868 
1869  return events;
1870 }
1871 
1872 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
1873  do { \
1874  if (!test_bit(EV_##type, dev->evbit)) \
1875  memset(dev->bits##bit, 0, \
1876  sizeof(dev->bits##bit)); \
1877  } while (0)
1878 
1879 static void input_cleanse_bitmasks(struct input_dev *dev)
1880 {
1881  INPUT_CLEANSE_BITMASK(dev, KEY, key);
1882  INPUT_CLEANSE_BITMASK(dev, REL, rel);
1883  INPUT_CLEANSE_BITMASK(dev, ABS, abs);
1884  INPUT_CLEANSE_BITMASK(dev, MSC, msc);
1885  INPUT_CLEANSE_BITMASK(dev, LED, led);
1886  INPUT_CLEANSE_BITMASK(dev, SND, snd);
1887  INPUT_CLEANSE_BITMASK(dev, FF, ff);
1888  INPUT_CLEANSE_BITMASK(dev, SW, sw);
1889 }
1890 
1903 int input_register_device(struct input_dev *dev)
1904 {
1905  static atomic_t input_no = ATOMIC_INIT(0);
1906  struct input_handler *handler;
1907  unsigned int packet_size;
1908  const char *path;
1909  int error;
1910 
1911  /* Every input device generates EV_SYN/SYN_REPORT events. */
1912  __set_bit(EV_SYN, dev->evbit);
1913 
1914  /* KEY_RESERVED is not supposed to be transmitted to userspace. */
1915  __clear_bit(KEY_RESERVED, dev->keybit);
1916 
1917  /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
1918  input_cleanse_bitmasks(dev);
1919 
1920  packet_size = input_estimate_events_per_packet(dev);
1921  if (dev->hint_events_per_packet < packet_size)
1922  dev->hint_events_per_packet = packet_size;
1923 
1924  dev->max_vals = max(dev->hint_events_per_packet, packet_size) + 2;
1925  dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
1926  if (!dev->vals)
1927  return -ENOMEM;
1928 
1929  /*
1930  * If delay and period are pre-set by the driver, then autorepeating
1931  * is handled by the driver itself and we don't do it in input.c.
1932  */
1933  init_timer(&dev->timer);
1934  if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1935  dev->timer.data = (long) dev;
1936  dev->timer.function = input_repeat_key;
1937  dev->rep[REP_DELAY] = 250;
1938  dev->rep[REP_PERIOD] = 33;
1939  }
1940 
1941  if (!dev->getkeycode)
1942  dev->getkeycode = input_default_getkeycode;
1943 
1944  if (!dev->setkeycode)
1945  dev->setkeycode = input_default_setkeycode;
1946 
1947  dev_set_name(&dev->dev, "input%ld",
1948  (unsigned long) atomic_inc_return(&input_no) - 1);
1949 
1950  error = device_add(&dev->dev);
1951  if (error)
1952  return error;
1953 
1954  path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1955  pr_info("%s as %s\n",
1956  dev->name ? dev->name : "Unspecified device",
1957  path ? path : "N/A");
1958  kfree(path);
1959 
1960  error = mutex_lock_interruptible(&input_mutex);
1961  if (error) {
1962  device_del(&dev->dev);
1963  return error;
1964  }
1965 
1966  list_add_tail(&dev->node, &input_dev_list);
1967 
1968  list_for_each_entry(handler, &input_handler_list, node)
1969  input_attach_handler(dev, handler);
1970 
1971  input_wakeup_procfs_readers();
1972 
1973  mutex_unlock(&input_mutex);
1974 
1975  return 0;
1976 }
1977 EXPORT_SYMBOL(input_register_device);
1978 
1986 void input_unregister_device(struct input_dev *dev)
1987 {
1988  struct input_handle *handle, *next;
1989 
1990  input_disconnect_device(dev);
1991 
1992  mutex_lock(&input_mutex);
1993 
1994  list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1995  handle->handler->disconnect(handle);
1996  WARN_ON(!list_empty(&dev->h_list));
1997 
1998  del_timer_sync(&dev->timer);
1999  list_del_init(&dev->node);
2000 
2001  input_wakeup_procfs_readers();
2002 
2003  mutex_unlock(&input_mutex);
2004 
2005  device_unregister(&dev->dev);
2006 }
2007 EXPORT_SYMBOL(input_unregister_device);
2008 
2017 int input_register_handler(struct input_handler *handler)
2018 {
2019  struct input_dev *dev;
2020  int error;
2021 
2022  error = mutex_lock_interruptible(&input_mutex);
2023  if (error)
2024  return error;
2025 
2026  INIT_LIST_HEAD(&handler->h_list);
2027 
2028  list_add_tail(&handler->node, &input_handler_list);
2029 
2030  list_for_each_entry(dev, &input_dev_list, node)
2031  input_attach_handler(dev, handler);
2032 
2033  input_wakeup_procfs_readers();
2034 
2035  mutex_unlock(&input_mutex);
2036  return 0;
2037 }
2038 EXPORT_SYMBOL(input_register_handler);
2039 
2047 void input_unregister_handler(struct input_handler *handler)
2048 {
2049  struct input_handle *handle, *next;
2050 
2051  mutex_lock(&input_mutex);
2052 
2053  list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2054  handler->disconnect(handle);
2055  WARN_ON(!list_empty(&handler->h_list));
2056 
2057  list_del_init(&handler->node);
2058 
2059  input_wakeup_procfs_readers();
2060 
2061  mutex_unlock(&input_mutex);
2062 }
2063 EXPORT_SYMBOL(input_unregister_handler);
2064 
2077 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2078  int (*fn)(struct input_handle *, void *))
2079 {
2080  struct input_handle *handle;
2081  int retval = 0;
2082 
2083  rcu_read_lock();
2084 
2085  list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2086  retval = fn(handle, data);
2087  if (retval)
2088  break;
2089  }
2090 
2091  rcu_read_unlock();
2092 
2093  return retval;
2094 }
2095 EXPORT_SYMBOL(input_handler_for_each_handle);
2096 
2108 int input_register_handle(struct input_handle *handle)
2109 {
2110  struct input_handler *handler = handle->handler;
2111  struct input_dev *dev = handle->dev;
2112  int error;
2113 
2114  /*
2115  * We take dev->mutex here to prevent race with
2116  * input_release_device().
2117  */
2118  error = mutex_lock_interruptible(&dev->mutex);
2119  if (error)
2120  return error;
2121 
2122  /*
2123  * Filters go to the head of the list, normal handlers
2124  * to the tail.
2125  */
2126  if (handler->filter)
2127  list_add_rcu(&handle->d_node, &dev->h_list);
2128  else
2129  list_add_tail_rcu(&handle->d_node, &dev->h_list);
2130 
2131  mutex_unlock(&dev->mutex);
2132 
2133  /*
2134  * Since we are supposed to be called from ->connect()
2135  * which is mutually exclusive with ->disconnect()
2136  * we can't be racing with input_unregister_handle()
2137  * and so separate lock is not needed here.
2138  */
2139  list_add_tail_rcu(&handle->h_node, &handler->h_list);
2140 
2141  if (handler->start)
2142  handler->start(handle);
2143 
2144  return 0;
2145 }
2146 EXPORT_SYMBOL(input_register_handle);
2147 
2158 void input_unregister_handle(struct input_handle *handle)
2159 {
2160  struct input_dev *dev = handle->dev;
2161 
2162  list_del_rcu(&handle->h_node);
2163 
2164  /*
2165  * Take dev->mutex to prevent race with input_release_device().
2166  */
2167  mutex_lock(&dev->mutex);
2168  list_del_rcu(&handle->d_node);
2169  mutex_unlock(&dev->mutex);
2170 
2171  synchronize_rcu();
2172 }
2173 EXPORT_SYMBOL(input_unregister_handle);
2174 
2186 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2187  bool allow_dynamic)
2188 {
2189  /*
2190  * This function should be called from input handler's ->connect()
2191  * methods, which are serialized with input_mutex, so no additional
2192  * locking is needed here.
2193  */
2194  if (legacy_base >= 0) {
2195  int minor = ida_simple_get(&input_ida,
2196  legacy_base,
2197  legacy_base + legacy_num,
2198  GFP_KERNEL);
2199  if (minor >= 0 || !allow_dynamic)
2200  return minor;
2201  }
2202 
2203  return ida_simple_get(&input_ida,
2205  GFP_KERNEL);
2206 }
2207 EXPORT_SYMBOL(input_get_new_minor);
2208 
2216 void input_free_minor(unsigned int minor)
2217 {
2218  ida_simple_remove(&input_ida, minor);
2219 }
2220 EXPORT_SYMBOL(input_free_minor);
2221 
2222 static int __init input_init(void)
2223 {
2224  int err;
2225 
2226  err = class_register(&input_class);
2227  if (err) {
2228  pr_err("unable to register input_dev class\n");
2229  return err;
2230  }
2231 
2232  err = input_proc_init();
2233  if (err)
2234  goto fail1;
2235 
2237  INPUT_MAX_CHAR_DEVICES, "input");
2238  if (err) {
2239  pr_err("unable to register char major %d", INPUT_MAJOR);
2240  goto fail2;
2241  }
2242 
2243  return 0;
2244 
2245  fail2: input_proc_exit();
2246  fail1: class_unregister(&input_class);
2247  return err;
2248 }
2249 
2250 static void __exit input_exit(void)
2251 {
2252  input_proc_exit();
2255  class_unregister(&input_class);
2256 }
2257 
2258 subsys_initcall(input_init);
2259 module_exit(input_exit);