Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
tx.c
Go to the documentation of this file.
1 /*
2  * Atheros CARL9170 driver
3  *
4  * 802.11 xmit & status routines
5  *
6  * Copyright 2008, Johannes Berg <[email protected]>
7  * Copyright 2009, 2010, Christian Lamparter <[email protected]>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; see the file COPYING. If not, see
21  * http://www.gnu.org/licenses/.
22  *
23  * This file incorporates work covered by the following copyright and
24  * permission notice:
25  * Copyright (c) 2007-2008 Atheros Communications, Inc.
26  *
27  * Permission to use, copy, modify, and/or distribute this software for any
28  * purpose with or without fee is hereby granted, provided that the above
29  * copyright notice and this permission notice appear in all copies.
30  *
31  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
32  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
33  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
34  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
35  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
36  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
37  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
38  */
39 
40 #include <linux/init.h>
41 #include <linux/slab.h>
42 #include <linux/module.h>
43 #include <linux/etherdevice.h>
44 #include <net/mac80211.h>
45 #include "carl9170.h"
46 #include "hw.h"
47 #include "cmd.h"
48 
49 static inline unsigned int __carl9170_get_queue(struct ar9170 *ar,
50  unsigned int queue)
51 {
52  if (unlikely(modparam_noht)) {
53  return queue;
54  } else {
55  /*
56  * This is just another workaround, until
57  * someone figures out how to get QoS and
58  * AMPDU to play nicely together.
59  */
60 
61  return 2; /* AC_BE */
62  }
63 }
64 
65 static inline unsigned int carl9170_get_queue(struct ar9170 *ar,
66  struct sk_buff *skb)
67 {
68  return __carl9170_get_queue(ar, skb_get_queue_mapping(skb));
69 }
70 
71 static bool is_mem_full(struct ar9170 *ar)
72 {
73  return (DIV_ROUND_UP(IEEE80211_MAX_FRAME_LEN, ar->fw.mem_block_size) >
75 }
76 
77 static void carl9170_tx_accounting(struct ar9170 *ar, struct sk_buff *skb)
78 {
79  int queue, i;
80  bool mem_full;
81 
83 
84  queue = skb_get_queue_mapping(skb);
85  spin_lock_bh(&ar->tx_stats_lock);
86 
87  /*
88  * The driver has to accept the frame, regardless if the queue is
89  * full to the brim, or not. We have to do the queuing internally,
90  * since mac80211 assumes that a driver which can operate with
91  * aggregated frames does not reject frames for this reason.
92  */
93  ar->tx_stats[queue].len++;
94  ar->tx_stats[queue].count++;
95 
96  mem_full = is_mem_full(ar);
97  for (i = 0; i < ar->hw->queues; i++) {
98  if (mem_full || ar->tx_stats[i].len >= ar->tx_stats[i].limit) {
99  ieee80211_stop_queue(ar->hw, i);
101  }
102  }
103 
104  spin_unlock_bh(&ar->tx_stats_lock);
105 }
106 
107 /* needs rcu_read_lock */
108 static struct ieee80211_sta *__carl9170_get_tx_sta(struct ar9170 *ar,
109  struct sk_buff *skb)
110 {
111  struct _carl9170_tx_superframe *super = (void *) skb->data;
112  struct ieee80211_hdr *hdr = (void *) super->frame_data;
113  struct ieee80211_vif *vif;
114  unsigned int vif_id;
115 
116  vif_id = (super->s.misc & CARL9170_TX_SUPER_MISC_VIF_ID) >>
118 
119  if (WARN_ON_ONCE(vif_id >= AR9170_MAX_VIRTUAL_MAC))
120  return NULL;
121 
122  vif = rcu_dereference(ar->vif_priv[vif_id].vif);
123  if (unlikely(!vif))
124  return NULL;
125 
126  /*
127  * Normally we should use wrappers like ieee80211_get_DA to get
128  * the correct peer ieee80211_sta.
129  *
130  * But there is a problem with indirect traffic (broadcasts, or
131  * data which is designated for other stations) in station mode.
132  * The frame will be directed to the AP for distribution and not
133  * to the actual destination.
134  */
135 
136  return ieee80211_find_sta(vif, hdr->addr1);
137 }
138 
139 static void carl9170_tx_ps_unblock(struct ar9170 *ar, struct sk_buff *skb)
140 {
141  struct ieee80211_sta *sta;
142  struct carl9170_sta_info *sta_info;
143 
144  rcu_read_lock();
145  sta = __carl9170_get_tx_sta(ar, skb);
146  if (unlikely(!sta))
147  goto out_rcu;
148 
149  sta_info = (struct carl9170_sta_info *) sta->drv_priv;
150  if (atomic_dec_return(&sta_info->pending_frames) == 0)
151  ieee80211_sta_block_awake(ar->hw, sta, false);
152 
153 out_rcu:
154  rcu_read_unlock();
155 }
156 
157 static void carl9170_tx_accounting_free(struct ar9170 *ar, struct sk_buff *skb)
158 {
159  int queue;
160 
161  queue = skb_get_queue_mapping(skb);
162 
163  spin_lock_bh(&ar->tx_stats_lock);
164 
165  ar->tx_stats[queue].len--;
166 
167  if (!is_mem_full(ar)) {
168  unsigned int i;
169  for (i = 0; i < ar->hw->queues; i++) {
170  if (ar->tx_stats[i].len >= CARL9170_NUM_TX_LIMIT_SOFT)
171  continue;
172 
173  if (ieee80211_queue_stopped(ar->hw, i)) {
174  unsigned long tmp;
175 
176  tmp = jiffies - ar->queue_stop_timeout[i];
177  if (tmp > ar->max_queue_stop_timeout[i])
179  }
180 
181  ieee80211_wake_queue(ar->hw, i);
182  }
183  }
184 
185  spin_unlock_bh(&ar->tx_stats_lock);
186 
188  complete(&ar->tx_flush);
189 }
190 
191 static int carl9170_alloc_dev_space(struct ar9170 *ar, struct sk_buff *skb)
192 {
193  struct _carl9170_tx_superframe *super = (void *) skb->data;
194  unsigned int chunks;
195  int cookie = -1;
196 
197  atomic_inc(&ar->mem_allocs);
198 
199  chunks = DIV_ROUND_UP(skb->len, ar->fw.mem_block_size);
200  if (unlikely(atomic_sub_return(chunks, &ar->mem_free_blocks) < 0)) {
201  atomic_add(chunks, &ar->mem_free_blocks);
202  return -ENOSPC;
203  }
204 
205  spin_lock_bh(&ar->mem_lock);
206  cookie = bitmap_find_free_region(ar->mem_bitmap, ar->fw.mem_blocks, 0);
207  spin_unlock_bh(&ar->mem_lock);
208 
209  if (unlikely(cookie < 0)) {
210  atomic_add(chunks, &ar->mem_free_blocks);
211  return -ENOSPC;
212  }
213 
214  super = (void *) skb->data;
215 
216  /*
217  * Cookie #0 serves two special purposes:
218  * 1. The firmware might use it generate BlockACK frames
219  * in responds of an incoming BlockAckReqs.
220  *
221  * 2. Prevent double-free bugs.
222  */
223  super->s.cookie = (u8) cookie + 1;
224  return 0;
225 }
226 
227 static void carl9170_release_dev_space(struct ar9170 *ar, struct sk_buff *skb)
228 {
229  struct _carl9170_tx_superframe *super = (void *) skb->data;
230  int cookie;
231 
232  /* make a local copy of the cookie */
233  cookie = super->s.cookie;
234  /* invalidate cookie */
235  super->s.cookie = 0;
236 
237  /*
238  * Do a out-of-bounds check on the cookie:
239  *
240  * * cookie "0" is reserved and won't be assigned to any
241  * out-going frame. Internally however, it is used to
242  * mark no longer/un-accounted frames and serves as a
243  * cheap way of preventing frames from being freed
244  * twice by _accident_. NB: There is a tiny race...
245  *
246  * * obviously, cookie number is limited by the amount
247  * of available memory blocks, so the number can
248  * never execeed the mem_blocks count.
249  */
250  if (unlikely(WARN_ON_ONCE(cookie == 0) ||
251  WARN_ON_ONCE(cookie > ar->fw.mem_blocks)))
252  return;
253 
254  atomic_add(DIV_ROUND_UP(skb->len, ar->fw.mem_block_size),
255  &ar->mem_free_blocks);
256 
257  spin_lock_bh(&ar->mem_lock);
259  spin_unlock_bh(&ar->mem_lock);
260 }
261 
262 /* Called from any context */
263 static void carl9170_tx_release(struct kref *ref)
264 {
265  struct ar9170 *ar;
266  struct carl9170_tx_info *arinfo;
267  struct ieee80211_tx_info *txinfo;
268  struct sk_buff *skb;
269 
270  arinfo = container_of(ref, struct carl9170_tx_info, ref);
271  txinfo = container_of((void *) arinfo, struct ieee80211_tx_info,
272  rate_driver_data);
273  skb = container_of((void *) txinfo, struct sk_buff, cb);
274 
275  ar = arinfo->ar;
276  if (WARN_ON_ONCE(!ar))
277  return;
278 
279  BUILD_BUG_ON(
280  offsetof(struct ieee80211_tx_info, status.ack_signal) != 20);
281 
282  memset(&txinfo->status.ack_signal, 0,
283  sizeof(struct ieee80211_tx_info) -
284  offsetof(struct ieee80211_tx_info, status.ack_signal));
285 
286  if (atomic_read(&ar->tx_total_queued))
287  ar->tx_schedule = true;
288 
289  if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) {
290  if (!atomic_read(&ar->tx_ampdu_upload))
291  ar->tx_ampdu_schedule = true;
292 
293  if (txinfo->flags & IEEE80211_TX_STAT_AMPDU) {
294  struct _carl9170_tx_superframe *super;
295 
296  super = (void *)skb->data;
297  txinfo->status.ampdu_len = super->s.rix;
298  txinfo->status.ampdu_ack_len = super->s.cnt;
299  } else if ((txinfo->flags & IEEE80211_TX_STAT_ACK) &&
300  !(txinfo->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)) {
301  /*
302  * drop redundant tx_status reports:
303  *
304  * 1. ampdu_ack_len of the final tx_status does
305  * include the feedback of this particular frame.
306  *
307  * 2. tx_status_irqsafe only queues up to 128
308  * tx feedback reports and discards the rest.
309  *
310  * 3. minstrel_ht is picky, it only accepts
311  * reports of frames with the TX_STATUS_AMPDU flag.
312  *
313  * 4. mac80211 is not particularly interested in
314  * feedback either [CTL_REQ_TX_STATUS not set]
315  */
316 
317  ieee80211_free_txskb(ar->hw, skb);
318  return;
319  } else {
320  /*
321  * Either the frame transmission has failed or
322  * mac80211 requested tx status.
323  */
324  }
325  }
326 
327  skb_pull(skb, sizeof(struct _carl9170_tx_superframe));
329 }
330 
331 void carl9170_tx_get_skb(struct sk_buff *skb)
332 {
333  struct carl9170_tx_info *arinfo = (void *)
334  (IEEE80211_SKB_CB(skb))->rate_driver_data;
335  kref_get(&arinfo->ref);
336 }
337 
338 int carl9170_tx_put_skb(struct sk_buff *skb)
339 {
340  struct carl9170_tx_info *arinfo = (void *)
341  (IEEE80211_SKB_CB(skb))->rate_driver_data;
342 
343  return kref_put(&arinfo->ref, carl9170_tx_release);
344 }
345 
346 /* Caller must hold the tid_info->lock & rcu_read_lock */
347 static void carl9170_tx_shift_bm(struct ar9170 *ar,
348  struct carl9170_sta_tid *tid_info, u16 seq)
349 {
350  u16 off;
351 
352  off = SEQ_DIFF(seq, tid_info->bsn);
353 
354  if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS))
355  return;
356 
357  /*
358  * Sanity check. For each MPDU we set the bit in bitmap and
359  * clear it once we received the tx_status.
360  * But if the bit is already cleared then we've been bitten
361  * by a bug.
362  */
363  WARN_ON_ONCE(!test_and_clear_bit(off, tid_info->bitmap));
364 
365  off = SEQ_DIFF(tid_info->snx, tid_info->bsn);
366  if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS))
367  return;
368 
369  if (!bitmap_empty(tid_info->bitmap, off))
370  off = find_first_bit(tid_info->bitmap, off);
371 
372  tid_info->bsn += off;
373  tid_info->bsn &= 0x0fff;
374 
375  bitmap_shift_right(tid_info->bitmap, tid_info->bitmap,
376  off, CARL9170_BAW_BITS);
377 }
378 
379 static void carl9170_tx_status_process_ampdu(struct ar9170 *ar,
380  struct sk_buff *skb, struct ieee80211_tx_info *txinfo)
381 {
382  struct _carl9170_tx_superframe *super = (void *) skb->data;
383  struct ieee80211_hdr *hdr = (void *) super->frame_data;
384  struct ieee80211_sta *sta;
385  struct carl9170_sta_info *sta_info;
386  struct carl9170_sta_tid *tid_info;
387  u8 tid;
388 
389  if (!(txinfo->flags & IEEE80211_TX_CTL_AMPDU) ||
390  txinfo->flags & IEEE80211_TX_CTL_INJECTED ||
391  (!(super->f.mac_control & cpu_to_le16(AR9170_TX_MAC_AGGR))))
392  return;
393 
394  rcu_read_lock();
395  sta = __carl9170_get_tx_sta(ar, skb);
396  if (unlikely(!sta))
397  goto out_rcu;
398 
399  tid = get_tid_h(hdr);
400 
401  sta_info = (void *) sta->drv_priv;
402  tid_info = rcu_dereference(sta_info->agg[tid]);
403  if (!tid_info)
404  goto out_rcu;
405 
406  spin_lock_bh(&tid_info->lock);
407  if (likely(tid_info->state >= CARL9170_TID_STATE_IDLE))
408  carl9170_tx_shift_bm(ar, tid_info, get_seq_h(hdr));
409 
410  if (sta_info->stats[tid].clear) {
411  sta_info->stats[tid].clear = false;
412  sta_info->stats[tid].req = false;
413  sta_info->stats[tid].ampdu_len = 0;
414  sta_info->stats[tid].ampdu_ack_len = 0;
415  }
416 
417  sta_info->stats[tid].ampdu_len++;
418  if (txinfo->status.rates[0].count == 1)
419  sta_info->stats[tid].ampdu_ack_len++;
420 
421  if (!(txinfo->flags & IEEE80211_TX_STAT_ACK))
422  sta_info->stats[tid].req = true;
423 
424  if (super->f.mac_control & cpu_to_le16(AR9170_TX_MAC_IMM_BA)) {
425  super->s.rix = sta_info->stats[tid].ampdu_len;
426  super->s.cnt = sta_info->stats[tid].ampdu_ack_len;
427  txinfo->flags |= IEEE80211_TX_STAT_AMPDU;
428  if (sta_info->stats[tid].req)
430 
431  sta_info->stats[tid].clear = true;
432  }
433  spin_unlock_bh(&tid_info->lock);
434 
435 out_rcu:
436  rcu_read_unlock();
437 }
438 
439 static void carl9170_tx_bar_status(struct ar9170 *ar, struct sk_buff *skb,
440  struct ieee80211_tx_info *tx_info)
441 {
442  struct _carl9170_tx_superframe *super = (void *) skb->data;
443  struct ieee80211_bar *bar = (void *) super->frame_data;
444 
445  /*
446  * Unlike all other frames, the status report for BARs does
447  * not directly come from the hardware as it is incapable of
448  * matching a BA to a previously send BAR.
449  * Instead the RX-path will scan for incoming BAs and set the
450  * IEEE80211_TX_STAT_ACK if it sees one that was likely
451  * caused by a BAR from us.
452  */
453 
454  if (unlikely(ieee80211_is_back_req(bar->frame_control)) &&
455  !(tx_info->flags & IEEE80211_TX_STAT_ACK)) {
457  int queue = skb_get_queue_mapping(skb);
458 
459  rcu_read_lock();
460  list_for_each_entry_rcu(entry, &ar->bar_list[queue], list) {
461  if (entry->skb == skb) {
462  spin_lock_bh(&ar->bar_list_lock[queue]);
463  list_del_rcu(&entry->list);
464  spin_unlock_bh(&ar->bar_list_lock[queue]);
465  kfree_rcu(entry, head);
466  goto out;
467  }
468  }
469 
470  WARN(1, "bar not found in %d - ra:%pM ta:%pM c:%x ssn:%x\n",
471  queue, bar->ra, bar->ta, bar->control,
472  bar->start_seq_num);
473 out:
474  rcu_read_unlock();
475  }
476 }
477 
478 void carl9170_tx_status(struct ar9170 *ar, struct sk_buff *skb,
479  const bool success)
480 {
481  struct ieee80211_tx_info *txinfo;
482 
483  carl9170_tx_accounting_free(ar, skb);
484 
485  txinfo = IEEE80211_SKB_CB(skb);
486 
487  carl9170_tx_bar_status(ar, skb, txinfo);
488 
489  if (success)
490  txinfo->flags |= IEEE80211_TX_STAT_ACK;
491  else
492  ar->tx_ack_failures++;
493 
494  if (txinfo->flags & IEEE80211_TX_CTL_AMPDU)
495  carl9170_tx_status_process_ampdu(ar, skb, txinfo);
496 
497  carl9170_tx_ps_unblock(ar, skb);
498  carl9170_tx_put_skb(skb);
499 }
500 
501 /* This function may be called form any context */
502 void carl9170_tx_callback(struct ar9170 *ar, struct sk_buff *skb)
503 {
504  struct ieee80211_tx_info *txinfo = IEEE80211_SKB_CB(skb);
505 
507 
508  if (txinfo->flags & IEEE80211_TX_CTL_AMPDU)
510 
511  if (carl9170_tx_put_skb(skb))
512  tasklet_hi_schedule(&ar->usb_tasklet);
513 }
514 
515 static struct sk_buff *carl9170_get_queued_skb(struct ar9170 *ar, u8 cookie,
516  struct sk_buff_head *queue)
517 {
518  struct sk_buff *skb;
519 
520  spin_lock_bh(&queue->lock);
521  skb_queue_walk(queue, skb) {
522  struct _carl9170_tx_superframe *txc = (void *) skb->data;
523 
524  if (txc->s.cookie != cookie)
525  continue;
526 
527  __skb_unlink(skb, queue);
528  spin_unlock_bh(&queue->lock);
529 
530  carl9170_release_dev_space(ar, skb);
531  return skb;
532  }
533  spin_unlock_bh(&queue->lock);
534 
535  return NULL;
536 }
537 
538 static void carl9170_tx_fill_rateinfo(struct ar9170 *ar, unsigned int rix,
539  unsigned int tries, struct ieee80211_tx_info *txinfo)
540 {
541  unsigned int i;
542 
543  for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
544  if (txinfo->status.rates[i].idx < 0)
545  break;
546 
547  if (i == rix) {
548  txinfo->status.rates[i].count = tries;
549  i++;
550  break;
551  }
552  }
553 
554  for (; i < IEEE80211_TX_MAX_RATES; i++) {
555  txinfo->status.rates[i].idx = -1;
556  txinfo->status.rates[i].count = 0;
557  }
558 }
559 
560 static void carl9170_check_queue_stop_timeout(struct ar9170 *ar)
561 {
562  int i;
563  struct sk_buff *skb;
564  struct ieee80211_tx_info *txinfo;
565  struct carl9170_tx_info *arinfo;
566  bool restart = false;
567 
568  for (i = 0; i < ar->hw->queues; i++) {
569  spin_lock_bh(&ar->tx_status[i].lock);
570 
571  skb = skb_peek(&ar->tx_status[i]);
572 
573  if (!skb)
574  goto next;
575 
576  txinfo = IEEE80211_SKB_CB(skb);
577  arinfo = (void *) txinfo->rate_driver_data;
578 
581  restart = true;
582 
583 next:
584  spin_unlock_bh(&ar->tx_status[i].lock);
585  }
586 
587  if (restart) {
588  /*
589  * At least one queue has been stuck for long enough.
590  * Give the device a kick and hope it gets back to
591  * work.
592  *
593  * possible reasons may include:
594  * - frames got lost/corrupted (bad connection to the device)
595  * - stalled rx processing/usb controller hiccups
596  * - firmware errors/bugs
597  * - every bug you can think of.
598  * - all bugs you can't...
599  * - ...
600  */
602  }
603 }
604 
605 static void carl9170_tx_ampdu_timeout(struct ar9170 *ar)
606 {
607  struct carl9170_sta_tid *iter;
608  struct sk_buff *skb;
609  struct ieee80211_tx_info *txinfo;
610  struct carl9170_tx_info *arinfo;
611  struct ieee80211_sta *sta;
612 
613  rcu_read_lock();
614  list_for_each_entry_rcu(iter, &ar->tx_ampdu_list, list) {
615  if (iter->state < CARL9170_TID_STATE_IDLE)
616  continue;
617 
618  spin_lock_bh(&iter->lock);
619  skb = skb_peek(&iter->queue);
620  if (!skb)
621  goto unlock;
622 
623  txinfo = IEEE80211_SKB_CB(skb);
624  arinfo = (void *)txinfo->rate_driver_data;
625  if (time_is_after_jiffies(arinfo->timeout +
627  goto unlock;
628 
629  sta = __carl9170_get_tx_sta(ar, skb);
630  if (WARN_ON(!sta))
631  goto unlock;
632 
633  ieee80211_stop_tx_ba_session(sta, iter->tid);
634 unlock:
635  spin_unlock_bh(&iter->lock);
636 
637  }
638  rcu_read_unlock();
639 }
640 
642 {
643  struct ar9170 *ar = container_of(work, struct ar9170,
644  tx_janitor.work);
645  if (!IS_STARTED(ar))
646  return;
647 
649 
650  carl9170_check_queue_stop_timeout(ar);
651  carl9170_tx_ampdu_timeout(ar);
652 
653  if (!atomic_read(&ar->tx_total_queued))
654  return;
655 
658 }
659 
660 static void __carl9170_tx_process_status(struct ar9170 *ar,
661  const uint8_t cookie, const uint8_t info)
662 {
663  struct sk_buff *skb;
664  struct ieee80211_tx_info *txinfo;
665  unsigned int r, t, q;
666  bool success = true;
667 
668  q = ar9170_qmap[info & CARL9170_TX_STATUS_QUEUE];
669 
670  skb = carl9170_get_queued_skb(ar, cookie, &ar->tx_status[q]);
671  if (!skb) {
672  /*
673  * We have lost the race to another thread.
674  */
675 
676  return ;
677  }
678 
679  txinfo = IEEE80211_SKB_CB(skb);
680 
681  if (!(info & CARL9170_TX_STATUS_SUCCESS))
682  success = false;
683 
686 
687  carl9170_tx_fill_rateinfo(ar, r, t, txinfo);
688  carl9170_tx_status(ar, skb, success);
689 }
690 
692  const struct carl9170_rsp *cmd)
693 {
694  unsigned int i;
695 
696  for (i = 0; i < cmd->hdr.ext; i++) {
697  if (WARN_ON(i > ((cmd->hdr.len / 2) + 1))) {
698  print_hex_dump_bytes("UU:", DUMP_PREFIX_NONE,
699  (void *) cmd, cmd->hdr.len + 4);
700  break;
701  }
702 
703  __carl9170_tx_process_status(ar, cmd->_tx_status[i].cookie,
704  cmd->_tx_status[i].info);
705  }
706 }
707 
708 static void carl9170_tx_rate_tpc_chains(struct ar9170 *ar,
709  struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate,
710  unsigned int *phyrate, unsigned int *tpc, unsigned int *chains)
711 {
712  struct ieee80211_rate *rate = NULL;
713  u8 *txpower;
714  unsigned int idx;
715 
716  idx = txrate->idx;
717  *tpc = 0;
718  *phyrate = 0;
719 
720  if (txrate->flags & IEEE80211_TX_RC_MCS) {
721  if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
722  /* +1 dBm for HT40 */
723  *tpc += 2;
724 
725  if (info->band == IEEE80211_BAND_2GHZ)
726  txpower = ar->power_2G_ht40;
727  else
728  txpower = ar->power_5G_ht40;
729  } else {
730  if (info->band == IEEE80211_BAND_2GHZ)
731  txpower = ar->power_2G_ht20;
732  else
733  txpower = ar->power_5G_ht20;
734  }
735 
736  *phyrate = txrate->idx;
737  *tpc += txpower[idx & 7];
738  } else {
739  if (info->band == IEEE80211_BAND_2GHZ) {
740  if (idx < 4)
741  txpower = ar->power_2G_cck;
742  else
743  txpower = ar->power_2G_ofdm;
744  } else {
745  txpower = ar->power_5G_leg;
746  idx += 4;
747  }
748 
749  rate = &__carl9170_ratetable[idx];
750  *tpc += txpower[(rate->hw_value & 0x30) >> 4];
751  *phyrate = rate->hw_value & 0xf;
752  }
753 
754  if (ar->eeprom.tx_mask == 1) {
755  *chains = AR9170_TX_PHY_TXCHAIN_1;
756  } else {
757  if (!(txrate->flags & IEEE80211_TX_RC_MCS) &&
758  rate && rate->bitrate >= 360)
759  *chains = AR9170_TX_PHY_TXCHAIN_1;
760  else
761  *chains = AR9170_TX_PHY_TXCHAIN_2;
762  }
763 
764  *tpc = min_t(unsigned int, *tpc, ar->hw->conf.power_level * 2);
765 }
766 
767 static __le32 carl9170_tx_physet(struct ar9170 *ar,
768  struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate)
769 {
770  unsigned int power = 0, chains = 0, phyrate = 0;
771  __le32 tmp;
772 
773  tmp = cpu_to_le32(0);
774 
775  if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
778  /* this works because 40 MHz is 2 and dup is 3 */
779  if (txrate->flags & IEEE80211_TX_RC_DUP_DATA)
782 
783  if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
785 
786  if (txrate->flags & IEEE80211_TX_RC_MCS) {
787  SET_VAL(AR9170_TX_PHY_MCS, phyrate, txrate->idx);
788 
789  /* heavy clip control */
790  tmp |= cpu_to_le32((txrate->idx & 0x7) <<
792 
794 
795  /*
796  * green field preamble does not work.
797  *
798  * if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
799  * tmp |= cpu_to_le32(AR9170_TX_PHY_GREENFIELD);
800  */
801  } else {
802  if (info->band == IEEE80211_BAND_2GHZ) {
803  if (txrate->idx <= AR9170_TX_PHY_RATE_CCK_11M)
805  else
807  } else {
809  }
810 
811  /*
812  * short preamble seems to be broken too.
813  *
814  * if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
815  * tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_PREAMBLE);
816  */
817  }
818  carl9170_tx_rate_tpc_chains(ar, info, txrate,
819  &phyrate, &power, &chains);
820 
821  tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_MCS, phyrate));
824  return tmp;
825 }
826 
827 static bool carl9170_tx_rts_check(struct ar9170 *ar,
828  struct ieee80211_tx_rate *rate,
829  bool ampdu, bool multi)
830 {
831  switch (ar->erp_mode) {
832  case CARL9170_ERP_AUTO:
833  if (ampdu)
834  break;
835 
837  if (!(rate->flags & IEEE80211_TX_RC_USE_RTS_CTS))
838  break;
839 
840  case CARL9170_ERP_RTS:
841  if (likely(!multi))
842  return true;
843 
844  default:
845  break;
846  }
847 
848  return false;
849 }
850 
851 static bool carl9170_tx_cts_check(struct ar9170 *ar,
852  struct ieee80211_tx_rate *rate)
853 {
854  switch (ar->erp_mode) {
855  case CARL9170_ERP_AUTO:
857  if (!(rate->flags & IEEE80211_TX_RC_USE_CTS_PROTECT))
858  break;
859 
860  case CARL9170_ERP_CTS:
861  return true;
862 
863  default:
864  break;
865  }
866 
867  return false;
868 }
869 
870 static int carl9170_tx_prepare(struct ar9170 *ar,
871  struct ieee80211_sta *sta,
872  struct sk_buff *skb)
873 {
874  struct ieee80211_hdr *hdr;
875  struct _carl9170_tx_superframe *txc;
876  struct carl9170_vif_info *cvif;
877  struct ieee80211_tx_info *info;
878  struct ieee80211_tx_rate *txrate;
879  struct carl9170_tx_info *arinfo;
880  unsigned int hw_queue;
881  int i;
882  __le16 mac_tmp;
883  u16 len;
884  bool ampdu, no_ack;
885 
886  BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data));
887  BUILD_BUG_ON(sizeof(struct _carl9170_tx_superdesc) !=
889 
890  BUILD_BUG_ON(sizeof(struct _ar9170_tx_hwdesc) !=
892 
893  BUILD_BUG_ON(IEEE80211_TX_MAX_RATES < CARL9170_TX_MAX_RATES);
894 
898 
899  hw_queue = ar9170_qmap[carl9170_get_queue(ar, skb)];
900 
901  hdr = (void *)skb->data;
902  info = IEEE80211_SKB_CB(skb);
903  len = skb->len;
904 
905  /*
906  * Note: If the frame was sent through a monitor interface,
907  * the ieee80211_vif pointer can be NULL.
908  */
909  if (likely(info->control.vif))
910  cvif = (void *) info->control.vif->drv_priv;
911  else
912  cvif = NULL;
913 
914  txc = (void *)skb_push(skb, sizeof(*txc));
915  memset(txc, 0, sizeof(*txc));
916 
917  SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, txc->s.misc, hw_queue);
918 
919  if (likely(cvif))
920  SET_VAL(CARL9170_TX_SUPER_MISC_VIF_ID, txc->s.misc, cvif->id);
921 
923  txc->s.misc |= CARL9170_TX_SUPER_MISC_CAB;
924 
927 
928  if (unlikely(ieee80211_is_probe_resp(hdr->frame_control)))
930 
933  mac_tmp |= cpu_to_le16((hw_queue << AR9170_TX_MAC_QOS_S) &
935 
936  no_ack = !!(info->flags & IEEE80211_TX_CTL_NO_ACK);
937  if (unlikely(no_ack))
938  mac_tmp |= cpu_to_le16(AR9170_TX_MAC_NO_ACK);
939 
940  if (info->control.hw_key) {
941  len += info->control.hw_key->icv_len;
942 
943  switch (info->control.hw_key->cipher) {
948  break;
951  break;
952  default:
953  WARN_ON(1);
954  goto err_out;
955  }
956  }
957 
958  ampdu = !!(info->flags & IEEE80211_TX_CTL_AMPDU);
959  if (ampdu) {
960  unsigned int density, factor;
961 
962  if (unlikely(!sta || !cvif))
963  goto err_out;
964 
965  factor = min_t(unsigned int, 1u, sta->ht_cap.ampdu_factor);
966  density = sta->ht_cap.ampdu_density;
967 
968  if (density) {
969  /*
970  * Watch out!
971  *
972  * Otus uses slightly different density values than
973  * those from the 802.11n spec.
974  */
975 
976  density = max_t(unsigned int, density + 1, 7u);
977  }
978 
980  txc->s.ampdu_settings, density);
981 
983  txc->s.ampdu_settings, factor);
984 
985  for (i = 0; i < CARL9170_TX_MAX_RATES; i++) {
986  txrate = &info->control.rates[i];
987  if (txrate->idx >= 0) {
988  txc->s.ri[i] =
990 
991  if (WARN_ON(!(txrate->flags &
993  /*
994  * Not sure if it's even possible
995  * to aggregate non-ht rates with
996  * this HW.
997  */
998  goto err_out;
999  }
1000  continue;
1001  }
1002 
1003  txrate->idx = 0;
1004  txrate->count = ar->hw->max_rate_tries;
1005  }
1006 
1007  mac_tmp |= cpu_to_le16(AR9170_TX_MAC_AGGR);
1008  }
1009 
1010  /*
1011  * NOTE: For the first rate, the ERP & AMPDU flags are directly
1012  * taken from mac_control. For all fallback rate, the firmware
1013  * updates the mac_control flags from the rate info field.
1014  */
1015  for (i = 1; i < CARL9170_TX_MAX_RATES; i++) {
1016  txrate = &info->control.rates[i];
1017  if (txrate->idx < 0)
1018  break;
1019 
1020  SET_VAL(CARL9170_TX_SUPER_RI_TRIES, txc->s.ri[i],
1021  txrate->count);
1022 
1023  if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack))
1024  txc->s.ri[i] |= (AR9170_TX_MAC_PROT_RTS <<
1026  else if (carl9170_tx_cts_check(ar, txrate))
1027  txc->s.ri[i] |= (AR9170_TX_MAC_PROT_CTS <<
1029 
1030  txc->s.rr[i - 1] = carl9170_tx_physet(ar, info, txrate);
1031  }
1032 
1033  txrate = &info->control.rates[0];
1034  SET_VAL(CARL9170_TX_SUPER_RI_TRIES, txc->s.ri[0], txrate->count);
1035 
1036  if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack))
1037  mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_RTS);
1038  else if (carl9170_tx_cts_check(ar, txrate))
1039  mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_CTS);
1040 
1041  txc->s.len = cpu_to_le16(skb->len);
1042  txc->f.length = cpu_to_le16(len + FCS_LEN);
1043  txc->f.mac_control = mac_tmp;
1044  txc->f.phy_control = carl9170_tx_physet(ar, info, txrate);
1045 
1046  arinfo = (void *)info->rate_driver_data;
1047  arinfo->timeout = jiffies;
1048  arinfo->ar = ar;
1049  kref_init(&arinfo->ref);
1050  return 0;
1051 
1052 err_out:
1053  skb_pull(skb, sizeof(*txc));
1054  return -EINVAL;
1055 }
1056 
1057 static void carl9170_set_immba(struct ar9170 *ar, struct sk_buff *skb)
1058 {
1059  struct _carl9170_tx_superframe *super;
1060 
1061  super = (void *) skb->data;
1062  super->f.mac_control |= cpu_to_le16(AR9170_TX_MAC_IMM_BA);
1063 }
1064 
1065 static void carl9170_set_ampdu_params(struct ar9170 *ar, struct sk_buff *skb)
1066 {
1067  struct _carl9170_tx_superframe *super;
1068  int tmp;
1069 
1070  super = (void *) skb->data;
1071 
1072  tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_DENSITY) <<
1074 
1075  /*
1076  * If you haven't noticed carl9170_tx_prepare has already filled
1077  * in all ampdu spacing & factor parameters.
1078  * Now it's the time to check whenever the settings have to be
1079  * updated by the firmware, or if everything is still the same.
1080  *
1081  * There's no sane way to handle different density values with
1082  * this hardware, so we may as well just do the compare in the
1083  * driver.
1084  */
1085 
1086  if (tmp != ar->current_density) {
1087  ar->current_density = tmp;
1088  super->s.ampdu_settings |=
1090  }
1091 
1092  tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_FACTOR) <<
1094 
1095  if (tmp != ar->current_factor) {
1096  ar->current_factor = tmp;
1097  super->s.ampdu_settings |=
1099  }
1100 }
1101 
1102 static bool carl9170_tx_rate_check(struct ar9170 *ar, struct sk_buff *_dest,
1103  struct sk_buff *_src)
1104 {
1105  struct _carl9170_tx_superframe *dest, *src;
1106 
1107  dest = (void *) _dest->data;
1108  src = (void *) _src->data;
1109 
1110  /*
1111  * The mac80211 rate control algorithm expects that all MPDUs in
1112  * an AMPDU share the same tx vectors.
1113  * This is not really obvious right now, because the hardware
1114  * does the AMPDU setup according to its own rulebook.
1115  * Our nicely assembled, strictly monotonic increasing mpdu
1116  * chains will be broken up, mashed back together...
1117  */
1118 
1119  return (dest->f.phy_control == src->f.phy_control);
1120 }
1121 
1122 static void carl9170_tx_ampdu(struct ar9170 *ar)
1123 {
1124  struct sk_buff_head agg;
1125  struct carl9170_sta_tid *tid_info;
1126  struct sk_buff *skb, *first;
1127  unsigned int i = 0, done_ampdus = 0;
1128  u16 seq, queue, tmpssn;
1129 
1131  ar->tx_ampdu_schedule = false;
1132 
1133  if (atomic_read(&ar->tx_ampdu_upload))
1134  return;
1135 
1136  if (!ar->tx_ampdu_list_len)
1137  return;
1138 
1139  __skb_queue_head_init(&agg);
1140 
1141  rcu_read_lock();
1142  tid_info = rcu_dereference(ar->tx_ampdu_iter);
1143  if (WARN_ON_ONCE(!tid_info)) {
1144  rcu_read_unlock();
1145  return;
1146  }
1147 
1148 retry:
1149  list_for_each_entry_continue_rcu(tid_info, &ar->tx_ampdu_list, list) {
1150  i++;
1151 
1152  if (tid_info->state < CARL9170_TID_STATE_PROGRESS)
1153  continue;
1154 
1155  queue = TID_TO_WME_AC(tid_info->tid);
1156 
1157  spin_lock_bh(&tid_info->lock);
1158  if (tid_info->state != CARL9170_TID_STATE_XMIT)
1159  goto processed;
1160 
1161  tid_info->counter++;
1162  first = skb_peek(&tid_info->queue);
1163  tmpssn = carl9170_get_seq(first);
1164  seq = tid_info->snx;
1165 
1166  if (unlikely(tmpssn != seq)) {
1167  tid_info->state = CARL9170_TID_STATE_IDLE;
1168 
1169  goto processed;
1170  }
1171 
1172  while ((skb = skb_peek(&tid_info->queue))) {
1173  /* strict 0, 1, ..., n - 1, n frame sequence order */
1174  if (unlikely(carl9170_get_seq(skb) != seq))
1175  break;
1176 
1177  /* don't upload more than AMPDU FACTOR allows. */
1178  if (unlikely(SEQ_DIFF(tid_info->snx, tid_info->bsn) >=
1179  (tid_info->max - 1)))
1180  break;
1181 
1182  if (!carl9170_tx_rate_check(ar, skb, first))
1183  break;
1184 
1186  tid_info->snx = seq = SEQ_NEXT(seq);
1187  __skb_unlink(skb, &tid_info->queue);
1188 
1189  __skb_queue_tail(&agg, skb);
1190 
1191  if (skb_queue_len(&agg) >= CARL9170_NUM_TX_AGG_MAX)
1192  break;
1193  }
1194 
1195  if (skb_queue_empty(&tid_info->queue) ||
1196  carl9170_get_seq(skb_peek(&tid_info->queue)) !=
1197  tid_info->snx) {
1198  /*
1199  * stop TID, if A-MPDU frames are still missing,
1200  * or whenever the queue is empty.
1201  */
1202 
1203  tid_info->state = CARL9170_TID_STATE_IDLE;
1204  }
1205  done_ampdus++;
1206 
1207 processed:
1208  spin_unlock_bh(&tid_info->lock);
1209 
1210  if (skb_queue_empty(&agg))
1211  continue;
1212 
1213  /* apply ampdu spacing & factor settings */
1214  carl9170_set_ampdu_params(ar, skb_peek(&agg));
1215 
1216  /* set aggregation push bit */
1217  carl9170_set_immba(ar, skb_peek_tail(&agg));
1218 
1219  spin_lock_bh(&ar->tx_pending[queue].lock);
1220  skb_queue_splice_tail_init(&agg, &ar->tx_pending[queue]);
1221  spin_unlock_bh(&ar->tx_pending[queue].lock);
1222  ar->tx_schedule = true;
1223  }
1224  if ((done_ampdus++ == 0) && (i++ == 0))
1225  goto retry;
1226 
1227  rcu_assign_pointer(ar->tx_ampdu_iter, tid_info);
1228  rcu_read_unlock();
1229 }
1230 
1231 static struct sk_buff *carl9170_tx_pick_skb(struct ar9170 *ar,
1232  struct sk_buff_head *queue)
1233 {
1234  struct sk_buff *skb;
1235  struct ieee80211_tx_info *info;
1236  struct carl9170_tx_info *arinfo;
1237 
1238  BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data));
1239 
1240  spin_lock_bh(&queue->lock);
1241  skb = skb_peek(queue);
1242  if (unlikely(!skb))
1243  goto err_unlock;
1244 
1245  if (carl9170_alloc_dev_space(ar, skb))
1246  goto err_unlock;
1247 
1248  __skb_unlink(skb, queue);
1249  spin_unlock_bh(&queue->lock);
1250 
1251  info = IEEE80211_SKB_CB(skb);
1252  arinfo = (void *) info->rate_driver_data;
1253 
1254  arinfo->timeout = jiffies;
1255  return skb;
1256 
1257 err_unlock:
1258  spin_unlock_bh(&queue->lock);
1259  return NULL;
1260 }
1261 
1262 void carl9170_tx_drop(struct ar9170 *ar, struct sk_buff *skb)
1263 {
1264  struct _carl9170_tx_superframe *super;
1265  uint8_t q = 0;
1266 
1267  ar->tx_dropped++;
1268 
1269  super = (void *)skb->data;
1271  ar9170_qmap[carl9170_get_queue(ar, skb)]);
1272  __carl9170_tx_process_status(ar, super->s.cookie, q);
1273 }
1274 
1275 static bool carl9170_tx_ps_drop(struct ar9170 *ar, struct sk_buff *skb)
1276 {
1277  struct ieee80211_sta *sta;
1278  struct carl9170_sta_info *sta_info;
1279  struct ieee80211_tx_info *tx_info;
1280 
1281  rcu_read_lock();
1282  sta = __carl9170_get_tx_sta(ar, skb);
1283  if (!sta)
1284  goto out_rcu;
1285 
1286  sta_info = (void *) sta->drv_priv;
1287  tx_info = IEEE80211_SKB_CB(skb);
1288 
1289  if (unlikely(sta_info->sleeping) &&
1290  !(tx_info->flags & (IEEE80211_TX_CTL_NO_PS_BUFFER |
1292  rcu_read_unlock();
1293 
1294  if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
1296 
1298  carl9170_release_dev_space(ar, skb);
1299  carl9170_tx_status(ar, skb, false);
1300  return true;
1301  }
1302 
1303 out_rcu:
1304  rcu_read_unlock();
1305  return false;
1306 }
1307 
1308 static void carl9170_bar_check(struct ar9170 *ar, struct sk_buff *skb)
1309 {
1310  struct _carl9170_tx_superframe *super = (void *) skb->data;
1311  struct ieee80211_bar *bar = (void *) super->frame_data;
1312 
1313  if (unlikely(ieee80211_is_back_req(bar->frame_control)) &&
1314  skb->len >= sizeof(struct ieee80211_bar)) {
1316  unsigned int queue = skb_get_queue_mapping(skb);
1317 
1318  entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
1319  if (!WARN_ON_ONCE(!entry)) {
1320  entry->skb = skb;
1321  spin_lock_bh(&ar->bar_list_lock[queue]);
1322  list_add_tail_rcu(&entry->list, &ar->bar_list[queue]);
1323  spin_unlock_bh(&ar->bar_list_lock[queue]);
1324  }
1325  }
1326 }
1327 
1328 static void carl9170_tx(struct ar9170 *ar)
1329 {
1330  struct sk_buff *skb;
1331  unsigned int i, q;
1332  bool schedule_garbagecollector = false;
1333 
1334  ar->tx_schedule = false;
1335 
1336  if (unlikely(!IS_STARTED(ar)))
1337  return;
1338 
1340 
1341  for (i = 0; i < ar->hw->queues; i++) {
1342  while (!skb_queue_empty(&ar->tx_pending[i])) {
1343  skb = carl9170_tx_pick_skb(ar, &ar->tx_pending[i]);
1344  if (unlikely(!skb))
1345  break;
1346 
1347  if (unlikely(carl9170_tx_ps_drop(ar, skb)))
1348  continue;
1349 
1350  carl9170_bar_check(ar, skb);
1351 
1353 
1354  q = __carl9170_get_queue(ar, i);
1355  /*
1356  * NB: tx_status[i] vs. tx_status[q],
1357  * TODO: Move into pick_skb or alloc_dev_space.
1358  */
1359  skb_queue_tail(&ar->tx_status[q], skb);
1360 
1361  /*
1362  * increase ref count to "2".
1363  * Ref counting is the easiest way to solve the
1364  * race between the urb's completion routine:
1365  * carl9170_tx_callback
1366  * and wlan tx status functions:
1367  * carl9170_tx_status/janitor.
1368  */
1369  carl9170_tx_get_skb(skb);
1370 
1371  carl9170_usb_tx(ar, skb);
1372  schedule_garbagecollector = true;
1373  }
1374  }
1375 
1376  if (!schedule_garbagecollector)
1377  return;
1378 
1381 }
1382 
1383 static bool carl9170_tx_ampdu_queue(struct ar9170 *ar,
1384  struct ieee80211_sta *sta, struct sk_buff *skb)
1385 {
1386  struct _carl9170_tx_superframe *super = (void *) skb->data;
1387  struct carl9170_sta_info *sta_info;
1388  struct carl9170_sta_tid *agg;
1389  struct sk_buff *iter;
1390  u16 tid, seq, qseq, off;
1391  bool run = false;
1392 
1393  tid = carl9170_get_tid(skb);
1394  seq = carl9170_get_seq(skb);
1395  sta_info = (void *) sta->drv_priv;
1396 
1397  rcu_read_lock();
1398  agg = rcu_dereference(sta_info->agg[tid]);
1399 
1400  if (!agg)
1401  goto err_unlock_rcu;
1402 
1403  spin_lock_bh(&agg->lock);
1404  if (unlikely(agg->state < CARL9170_TID_STATE_IDLE))
1405  goto err_unlock;
1406 
1407  /* check if sequence is within the BA window */
1408  if (unlikely(!BAW_WITHIN(agg->bsn, CARL9170_BAW_BITS, seq)))
1409  goto err_unlock;
1410 
1411  if (WARN_ON_ONCE(!BAW_WITHIN(agg->snx, CARL9170_BAW_BITS, seq)))
1412  goto err_unlock;
1413 
1414  off = SEQ_DIFF(seq, agg->bsn);
1415  if (WARN_ON_ONCE(test_and_set_bit(off, agg->bitmap)))
1416  goto err_unlock;
1417 
1418  if (likely(BAW_WITHIN(agg->hsn, CARL9170_BAW_BITS, seq))) {
1419  __skb_queue_tail(&agg->queue, skb);
1420  agg->hsn = seq;
1421  goto queued;
1422  }
1423 
1424  skb_queue_reverse_walk(&agg->queue, iter) {
1425  qseq = carl9170_get_seq(iter);
1426 
1427  if (BAW_WITHIN(qseq, CARL9170_BAW_BITS, seq)) {
1428  __skb_queue_after(&agg->queue, iter, skb);
1429  goto queued;
1430  }
1431  }
1432 
1433  __skb_queue_head(&agg->queue, skb);
1434 queued:
1435 
1436  if (unlikely(agg->state != CARL9170_TID_STATE_XMIT)) {
1437  if (agg->snx == carl9170_get_seq(skb_peek(&agg->queue))) {
1438  agg->state = CARL9170_TID_STATE_XMIT;
1439  run = true;
1440  }
1441  }
1442 
1443  spin_unlock_bh(&agg->lock);
1444  rcu_read_unlock();
1445 
1446  return run;
1447 
1448 err_unlock:
1449  spin_unlock_bh(&agg->lock);
1450 
1451 err_unlock_rcu:
1452  rcu_read_unlock();
1453  super->f.mac_control &= ~cpu_to_le16(AR9170_TX_MAC_AGGR);
1454  carl9170_tx_status(ar, skb, false);
1455  ar->tx_dropped++;
1456  return false;
1457 }
1458 
1460  struct ieee80211_tx_control *control,
1461  struct sk_buff *skb)
1462 {
1463  struct ar9170 *ar = hw->priv;
1464  struct ieee80211_tx_info *info;
1465  struct ieee80211_sta *sta = control->sta;
1466  bool run;
1467 
1468  if (unlikely(!IS_STARTED(ar)))
1469  goto err_free;
1470 
1471  info = IEEE80211_SKB_CB(skb);
1472 
1473  if (unlikely(carl9170_tx_prepare(ar, sta, skb)))
1474  goto err_free;
1475 
1476  carl9170_tx_accounting(ar, skb);
1477  /*
1478  * from now on, one has to use carl9170_tx_status to free
1479  * all ressouces which are associated with the frame.
1480  */
1481 
1482  if (sta) {
1483  struct carl9170_sta_info *stai = (void *) sta->drv_priv;
1484  atomic_inc(&stai->pending_frames);
1485  }
1486 
1487  if (info->flags & IEEE80211_TX_CTL_AMPDU) {
1488  run = carl9170_tx_ampdu_queue(ar, sta, skb);
1489  if (run)
1490  carl9170_tx_ampdu(ar);
1491 
1492  } else {
1493  unsigned int queue = skb_get_queue_mapping(skb);
1494 
1495  skb_queue_tail(&ar->tx_pending[queue], skb);
1496  }
1497 
1498  carl9170_tx(ar);
1499  return;
1500 
1501 err_free:
1502  ar->tx_dropped++;
1503  ieee80211_free_txskb(ar->hw, skb);
1504 }
1505 
1507 {
1508 
1509  if (ar->tx_ampdu_schedule)
1510  carl9170_tx_ampdu(ar);
1511 
1512  if (ar->tx_schedule)
1513  carl9170_tx(ar);
1514 }
1515 
1516 int carl9170_update_beacon(struct ar9170 *ar, const bool submit)
1517 {
1518  struct sk_buff *skb = NULL;
1519  struct carl9170_vif_info *cvif;
1520  struct ieee80211_tx_info *txinfo;
1521  struct ieee80211_tx_rate *rate;
1522  __le32 *data, *old = NULL;
1523  unsigned int plcp, power, chains;
1524  u32 word, ht1, off, addr, len;
1525  int i = 0, err = 0;
1526 
1527  rcu_read_lock();
1528  cvif = rcu_dereference(ar->beacon_iter);
1529 retry:
1530  if (ar->vifs == 0 || !cvif)
1531  goto out_unlock;
1532 
1533  list_for_each_entry_continue_rcu(cvif, &ar->vif_list, list) {
1534  if (cvif->active && cvif->enable_beacon)
1535  goto found;
1536  }
1537 
1538  if (!ar->beacon_enabled || i++)
1539  goto out_unlock;
1540 
1541  goto retry;
1542 
1543 found:
1544  rcu_assign_pointer(ar->beacon_iter, cvif);
1545 
1546  skb = ieee80211_beacon_get_tim(ar->hw, carl9170_get_vif(cvif),
1547  NULL, NULL);
1548 
1549  if (!skb) {
1550  err = -ENOMEM;
1551  goto err_free;
1552  }
1553 
1554  txinfo = IEEE80211_SKB_CB(skb);
1555  spin_lock_bh(&ar->beacon_lock);
1556  data = (__le32 *)skb->data;
1557  if (cvif->beacon)
1558  old = (__le32 *)cvif->beacon->data;
1559 
1560  off = cvif->id * AR9170_MAC_BCN_LENGTH_MAX;
1561  addr = ar->fw.beacon_addr + off;
1562  len = roundup(skb->len + FCS_LEN, 4);
1563 
1564  if ((off + len) > ar->fw.beacon_max_len) {
1565  if (net_ratelimit()) {
1566  wiphy_err(ar->hw->wiphy, "beacon does not "
1567  "fit into device memory!\n");
1568  }
1569  err = -EINVAL;
1570  goto err_unlock;
1571  }
1572 
1573  if (len > AR9170_MAC_BCN_LENGTH_MAX) {
1574  if (net_ratelimit()) {
1575  wiphy_err(ar->hw->wiphy, "no support for beacons "
1576  "bigger than %d (yours:%d).\n",
1578  }
1579 
1580  err = -EMSGSIZE;
1581  goto err_unlock;
1582  }
1583 
1585  rate = &txinfo->control.rates[0];
1586  carl9170_tx_rate_tpc_chains(ar, txinfo, rate, &plcp, &power, &chains);
1587  if (!(txinfo->control.rates[0].flags & IEEE80211_TX_RC_MCS)) {
1588  if (plcp <= AR9170_TX_PHY_RATE_CCK_11M)
1589  plcp |= ((skb->len + FCS_LEN) << (3 + 16)) + 0x0400;
1590  else
1591  plcp |= ((skb->len + FCS_LEN) << 16) + 0x0010;
1592  } else {
1593  ht1 |= AR9170_MAC_BCN_HT1_HT_EN;
1594  if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
1595  plcp |= AR9170_MAC_BCN_HT2_SGI;
1596 
1597  if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
1599  plcp |= AR9170_MAC_BCN_HT2_BW40;
1600  }
1601  if (rate->flags & IEEE80211_TX_RC_DUP_DATA) {
1603  plcp |= AR9170_MAC_BCN_HT2_BW40;
1604  }
1605 
1606  SET_VAL(AR9170_MAC_BCN_HT2_LEN, plcp, skb->len + FCS_LEN);
1607  }
1608 
1610  SET_VAL(AR9170_MAC_BCN_HT1_TPC, ht1, power);
1611  SET_VAL(AR9170_MAC_BCN_HT1_CHAIN_MASK, ht1, chains);
1612  if (chains == AR9170_TX_PHY_TXCHAIN_2)
1614 
1617  if (!(txinfo->control.rates[0].flags & IEEE80211_TX_RC_MCS))
1619  else
1621 
1622  for (i = 0; i < DIV_ROUND_UP(skb->len, 4); i++) {
1623  /*
1624  * XXX: This accesses beyond skb data for up
1625  * to the last 3 bytes!!
1626  */
1627 
1628  if (old && (data[i] == old[i]))
1629  continue;
1630 
1631  word = le32_to_cpu(data[i]);
1632  carl9170_async_regwrite(addr + 4 * i, word);
1633  }
1635 
1636  dev_kfree_skb_any(cvif->beacon);
1637  cvif->beacon = NULL;
1638 
1640  if (!err)
1641  cvif->beacon = skb;
1642  spin_unlock_bh(&ar->beacon_lock);
1643  if (err)
1644  goto err_free;
1645 
1646  if (submit) {
1647  err = carl9170_bcn_ctrl(ar, cvif->id,
1649  addr, skb->len + FCS_LEN);
1650 
1651  if (err)
1652  goto err_free;
1653  }
1654 out_unlock:
1655  rcu_read_unlock();
1656  return 0;
1657 
1658 err_unlock:
1659  spin_unlock_bh(&ar->beacon_lock);
1660 
1661 err_free:
1662  rcu_read_unlock();
1663  dev_kfree_skb_any(skb);
1664  return err;
1665 }